Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Mucosal Immunol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851589

ABSTRACT

Influenza A virus (IAV) infection leads to the formation of mucosal memory CD4 T cells that can protect the host. An in-depth understanding of the signals that shape memory cell development is required for more effective vaccine design. We have examined the formation of memory CD4 T cells in the lung following IAV infection of mice, characterizing changes to the lung landscape and immune cell composition. IAV-specific CD4 T cells were found throughout the lung at both primary and memory time points. These cells were found near lung airways and in close contact with a range of immune cells including macrophages, dendritic cells, and B cells. Interactions between lung IAV-specific CD4 T cells and major histocompatibility complex (MHC)II+ cells during the primary immune response were important in shaping the subsequent memory pool. Treatment with an anti-MHCII blocking antibody increased the proportion of memory CD4 T cells found in lung airways but reduced interferon-γ expression by IAV-specific immunodominant memory CD4 T cells. The immunodominant CD4 T cells expressed higher levels of programmed death ligand 1 (PD1) than other IAV-specific CD4 T cells and PD1+ memory CD4 T cells were located further away from MHCII+ cells than their PD1-low counterparts. This distinction in location was lost in mice treated with anti-MHCII antibodies. These data suggest that sustained antigen presentation in the lung impacts the formation of memory CD4 T cells by regulating their cytokine production and location.

2.
Cell Rep ; 43(7): 114405, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923463

ABSTRACT

The RNA cap methyltransferase CMTR1 methylates the first transcribed nucleotide of RNA polymerase II transcripts, impacting gene expression mechanisms, including during innate immune responses. Using mass spectrometry, we identify a multiply phosphorylated region of CMTR1 (phospho-patch [P-Patch]), which is a substrate for the kinase CK2 (casein kinase II). CMTR1 phosphorylation alters intramolecular interactions, increases recruitment to RNA polymerase II, and promotes RNA cap methylation. P-Patch phosphorylation occurs during the G1 phase of the cell cycle, recruiting CMTR1 to RNA polymerase II during a period of rapid transcription and RNA cap formation. CMTR1 phosphorylation is required for the expression of specific RNAs, including ribosomal protein gene transcripts, and promotes cell proliferation. CMTR1 phosphorylation is also required for interferon-stimulated gene expression. The cap-snatching virus, influenza A, utilizes host CMTR1 phosphorylation to produce the caps required for virus production and infection. We present an RNA cap methylation control mechanism whereby CK2 controls CMTR1, enhancing co-transcriptional capping.

3.
Nat Cancer ; 5(4): 659-672, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38286828

ABSTRACT

The mitochondrial genome (mtDNA) encodes essential machinery for oxidative phosphorylation and metabolic homeostasis. Tumor mtDNA is among the most somatically mutated regions of the cancer genome, but whether these mutations impact tumor biology is debated. We engineered truncating mutations of the mtDNA-encoded complex I gene, Mt-Nd5, into several murine models of melanoma. These mutations promoted a Warburg-like metabolic shift that reshaped tumor microenvironments in both mice and humans, consistently eliciting an anti-tumor immune response characterized by loss of resident neutrophils. Tumors bearing mtDNA mutations were sensitized to checkpoint blockade in a neutrophil-dependent manner, with induction of redox imbalance being sufficient to induce this effect in mtDNA wild-type tumors. Patient lesions bearing >50% mtDNA mutation heteroplasmy demonstrated a response rate to checkpoint blockade that was improved by ~2.5-fold over mtDNA wild-type cancer. These data nominate mtDNA mutations as functional regulators of cancer metabolism and tumor biology, with potential for therapeutic exploitation and treatment stratification.


Subject(s)
DNA, Mitochondrial , Glycolysis , Immune Checkpoint Inhibitors , Melanoma , Mutation , DNA, Mitochondrial/genetics , Animals , Melanoma/genetics , Melanoma/drug therapy , Mice , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Glycolysis/genetics , Tumor Microenvironment , Cell Line, Tumor , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Neutrophils/metabolism , Neutrophils/immunology , Mitochondria/metabolism , Mitochondria/genetics , Oxidative Phosphorylation/drug effects
4.
Essays Biochem ; 67(6): 929-939, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37139854

ABSTRACT

The introduction of immunotherapy, in particular immune checkpoint inhibition, has revolutionised the treatment of a range of tumours; however, only a minority of patients respond to these therapies. Understanding the mechanisms by which different immune checkpoint inhibitors work will be critical for both predicting patients who will respond and to developing rational combination therapies to extend these benefits further. The initiation and maintenance of anti-tumour T cell responses is a complicated process split between both the tumour microenvironment and the tumour draining lymph node. As understanding of this process has increased, it has become apparent that immune checkpoint inhibitors can act both within the tumour and in the draining lymph node and that they can target both already activated T cells as well as stimulating the priming of novel T cell clones. Currently, it seems likely that immune checkpoint inhibition acts both within the tumour and in the tumour draining lymph node both reinvigorating existing clones and driving further de novo priming of novel clones. The relative contributions of these sites and targets may depend on the type of model being used and the timeline of the response. Shorter models emphasise the effect of reinvigoration in the absence of recruitment of new clones but studies spanning longer time periods examining T cell clones in patients demonstrate clonal replacement. Ultimately, further work is needed to determine which of the diverse effects of immune checkpoint inhibitors are the fundamental drivers of anti-tumour responses in patients.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/pathology , Immunotherapy , Tumor Microenvironment
5.
bioRxiv ; 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36993533

ABSTRACT

The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented1. While mitochondrial DNA (mtDNA) mutations have been associated with both improved and worsened prognoses in several tumour lineages1-3, whether these mutations are drivers or exert any functional effect on tumour biology remains controversial. Here we discovered that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology4 we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, Mt-Nd5, into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux without major effects on oxygen consumption, driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment in both mice and humans, promoting an anti-tumour immune response characterised by loss of resident neutrophils. This subsequently sensitised tumours bearing high mtDNA mutant heteroplasmy to immune checkpoint blockade, with phenocopy of key metabolic changes being sufficient to mediate this effect. Strikingly, patient lesions bearing >50% mtDNA mutation heteroplasmy also demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification.

6.
Angew Chem Int Ed Engl ; 62(8): e202216142, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36562327

ABSTRACT

Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.


Subject(s)
Fluorescent Dyes , T-Lymphocytes, Cytotoxic , Animals , Humans , Mice , Granzymes , Killer Cells, Natural , Mice, Knockout
7.
Angew Chem Weinheim Bergstr Ger ; 135(8): e202216142, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-38515764

ABSTRACT

Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.

8.
PLoS One ; 17(8): e0272857, 2022.
Article in English | MEDLINE | ID: mdl-35976946

ABSTRACT

Effective immune responses depend on efficient antigen uptake in the periphery, transport of those antigens to, and presentation in draining lymph nodes (LNs). These processes have been studied intensively using stable fluorescent proteins (FPs) as model antigens. To date, ZsGreen is the only FP that can be tracked efficiently towards LNs, hence, it is difficult to compare studies using alternated tracking proteins. Here, we systematically compared six different FPs. We included ZsGreen, ZsYellow, DsRed, AsRed, mCherry, and mRFP based on sequence homology and/or origin species, and generated FP-expressing tumor cell lines. Stability of fluorescent signal was assessed in vitro over time, across different pH environments, and in vivo through FP antigen uptake and transfer to immune cells isolated from tumors and tumor-draining LNs. ZsGreen could be detected in high percentages of all analyzed tumor-infiltrating immune cells, with highest amounts in tumor-associated macrophages (TAMs) and type 2 conventional dendritic cells (cDC2s). ZsYellow, AsRed, and DsRed followed a similar pattern, but percentages of FP-containing immune cells in the tumor were lower than for ZsGreen. Strikingly, mRFP and mCherry demonstrated a 'non-canonical' antigen uptake pattern where percentages of FP-positive tumor-infiltrating immune cells were highest for cDC1s not TAMs and cDC2s despite comparable stabilities and localization of all FPs. Analysis of antigen-containing cells in the LN was hindered by intracellular degradation of FPs. Only ZsGreen could be efficiently tracked to the LN, though some signal was measurable for ZsYellow and DsRed. In summary, we find that detection of antigen uptake and distribution is subject to variabilities related to fluorophore nature. Future experiments need to consider that these processes might be impacted by protein expression, stability, or other unknown factors. Thus, our data sheds light on potential under-appreciated mechanisms regulating antigen transfer and highlights potential uses and necessary caveats to interpretation based on FP use.


Subject(s)
Antigens, Neoplasm , Dendritic Cells , Antigens, Neoplasm/metabolism , Biological Transport , Cell Line, Tumor , Dendritic Cells/metabolism , Lymph Nodes
9.
Int J Biochem Cell Biol ; 147: 106227, 2022 06.
Article in English | MEDLINE | ID: mdl-35605877

ABSTRACT

Despite their low abundance in tumours conventional dendritic cells play an outsized role in initiating and perpetuating anti-tumour immunity; however progressively growing tumours suppress dendritic cell function in a range of ways preventing effective anti-tumour T cell responses. While the success of immune checkpoint blockade has focused attention on T-cell directed therapies, activating tumour dendritic cells has been shown to be critical for the efficacy of several immunotherapies and other conventional therapies owing to their ability to activate and restimulate anti-tumour T-cells. As such, the importance of understanding the mechanisms by which dendritic cell function is impaired are being investigated further. Yet, while much attention has been paid to the tumour microenvironment less has been given to the macroenvironment including effects in the bone marrow and the lymph node. It is now clear that dendritic cell function can be impaired in a variety of ways at different anatomical sites and understanding these mechanisms will be critical for developing effective strategies to tune the dendritic cell response in cancer.


Subject(s)
Dendritic Cells , Neoplasms , Humans , Immunotherapy , Lymph Nodes , Neoplasms/therapy , Tumor Microenvironment
10.
Nat Commun ; 13(1): 2366, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501326

ABSTRACT

Immunotherapy promotes the attack of cancer cells by the immune system; however, it is difficult to detect early responses before changes in tumor size occur. Here, we report the rational design of a fluorogenic peptide able to detect picomolar concentrations of active granzyme B as a biomarker of immune-mediated anticancer action. Through a series of chemical iterations and molecular dynamics simulations, we synthesize a library of FRET peptides and identify probe H5 with an optimal fit into granzyme B. We demonstrate that probe H5 enables the real-time detection of T cell-mediated anticancer activity in mouse tumors and in tumors from lung cancer patients. Furthermore, we show image-based phenotypic screens, which reveal that the AKT kinase inhibitor AZD5363 shows immune-mediated anticancer activity. The reactivity of probe H5 may enable the monitoring of early responses to anticancer treatments using tissue biopsies.


Subject(s)
Immunotherapy , Lung Neoplasms , Animals , Biopsy , Granzymes , Humans , Lung Neoplasms/drug therapy , Mice , Peptides , Research
11.
Gut ; 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477863

ABSTRACT

OBJECTIVE: Hepatocellular carcinoma (HCC) is increasingly associated with non-alcoholic steatohepatitis (NASH). HCC immunotherapy offers great promise; however, recent data suggests NASH-HCC may be less sensitive to conventional immune checkpoint inhibition (ICI). We hypothesised that targeting neutrophils using a CXCR2 small molecule inhibitor may sensitise NASH-HCC to ICI therapy. DESIGN: Neutrophil infiltration was characterised in human HCC and mouse models of HCC. Late-stage intervention with anti-PD1 and/or a CXCR2 inhibitor was performed in murine models of NASH-HCC. The tumour immune microenvironment was characterised by imaging mass cytometry, RNA-seq and flow cytometry. RESULTS: Neutrophils expressing CXCR2, a receptor crucial to neutrophil recruitment in acute-injury, are highly represented in human NASH-HCC. In models of NASH-HCC lacking response to ICI, the combination of a CXCR2 antagonist with anti-PD1 suppressed tumour burden and extended survival. Combination therapy increased intratumoural XCR1+ dendritic cell activation and CD8+ T cell numbers which are associated with anti-tumoural immunity, this was confirmed by loss of therapeutic effect on genetic impairment of myeloid cell recruitment, neutralisation of the XCR1-ligand XCL1 or depletion of CD8+ T cells. Therapeutic benefit was accompanied by an unexpected increase in tumour-associated neutrophils (TANs) which switched from a protumour to anti-tumour progenitor-like neutrophil phenotype. Reprogrammed TANs were found in direct contact with CD8+ T cells in clusters that were enriched for the cytotoxic anti-tumoural protease granzyme B. Neutrophil reprogramming was not observed in the circulation indicative of the combination therapy selectively influencing TANs. CONCLUSION: CXCR2-inhibition induces reprogramming of the tumour immune microenvironment that promotes ICI in NASH-HCC.

12.
Cancer Cell ; 37(6): 786-799.e5, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32516589

ABSTRACT

Generation of tumor-infiltrating lymphocytes begins when tumor antigens reach the lymph node (LN) to stimulate T cells, yet we know little of how tumor material is disseminated among the large variety of antigen-presenting dendritic cell (DC) subsets in the LN. Here, we demonstrate that tumor proteins are carried to the LN within discrete vesicles inside DCs and are then transferred among DC subsets. A synapse is formed between interacting DCs and vesicle transfer takes place in the absence of free exosomes. DCs -containing vesicles can uniquely activate T cells, whereas DCs lacking them do not. Understanding this restricted sharing of tumor identity provides substantial room for engineering better anti-tumor immunity.


Subject(s)
Antigen Presentation/immunology , Antigens, Neoplasm/immunology , Dendritic Cells/immunology , Melanoma, Experimental/immunology , Myeloid Cells/immunology , Synapses/immunology , T-Lymphocytes/immunology , Animals , Dendritic Cells/cytology , Dendritic Cells/metabolism , Male , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/cytology , Myeloid Cells/metabolism , Receptors, CCR2/physiology , Receptors, CCR7/physiology , Synapses/metabolism , Synapses/pathology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
13.
Cell ; 177(3): 556-571.e16, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30955881

ABSTRACT

Differentiation of proinflammatory CD4+ conventional T cells (Tconv) is critical for productive antitumor responses yet their elicitation remains poorly understood. We comprehensively characterized myeloid cells in tumor draining lymph nodes (tdLN) of mice and identified two subsets of conventional type-2 dendritic cells (cDC2) that traffic from tumor to tdLN and present tumor-derived antigens to CD4+ Tconv, but then fail to support antitumor CD4+ Tconv differentiation. Regulatory T cell (Treg) depletion enhanced their capacity to elicit strong CD4+ Tconv responses and ensuing antitumor protection. Analogous cDC2 populations were identified in patients, and as in mice, their abundance relative to Treg predicts protective ICOS+ PD-1lo CD4+ Tconv phenotypes and survival. Further, in melanoma patients with low Treg abundance, intratumoral cDC2 density alone correlates with abundant CD4+ Tconv and with responsiveness to anti-PD-1 therapy. Together, this highlights a pathway that restrains cDC2 and whose reversal enhances CD4+ Tconv abundance and controls tumor growth.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Animals , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Line, Tumor , Cytokines/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Diphtheria Toxin/immunology , Forkhead Transcription Factors/metabolism , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymphocyte Activation , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Chemokine/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment
14.
Adv Exp Med Biol ; 1060: 99-114, 2018.
Article in English | MEDLINE | ID: mdl-30155624

ABSTRACT

The tumor microenvironment comprises a mass of heterogeneous cell types, including immune cells, endothelial cells, and fibroblasts, alongside cancer cells. It is increasingly becoming clear that the development of this support niche is critical to the continued uncontrolled growth of the cancer. The tumor microenvironment contributes to the maintenance of cancer stemness and also directly promotes angiogenesis, invasion, metastasis, and chronic inflammation. In this chapter, we describe on the role of fibroblasts, specifically termed cancer-associated fibroblasts (CAFs), in the promotion and maintenance of cancers. CAFs have a multitude of effects on the growth and maintenance of cancer, and here we focus on their roles in modulating immune cells and responses; CAFs both inhibit immune cell access to the tumor microenvironment and inhibit their functions within the tumor. Finally, we describe the potential modulation of CAF function as an adjunct to bolster the effectiveness of cancer immunotherapies.


Subject(s)
Stromal Cells/pathology , Tumor Microenvironment , Animals , Drug Resistance, Neoplasm , Humans , Neoplasms/blood supply , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Stromal Cells/drug effects , Tumor Microenvironment/drug effects
15.
Elife ; 72018 06 04.
Article in English | MEDLINE | ID: mdl-29862966

ABSTRACT

Chimeric antigen receptors (CARs) are synthetic receptors that reprogram T cells to kill cancer. The success of CAR-T cell therapies highlights the promise of programmed immunity and suggests that applying CAR strategies to other immune cell lineages may be beneficial. Here, we engineered a family of Chimeric Antigen Receptors for Phagocytosis (CAR-Ps) that direct macrophages to engulf specific targets, including cancer cells. CAR-Ps consist of an extracellular antibody fragment, which can be modified to direct CAR-P activity towards specific antigens. By screening a panel of engulfment receptor intracellular domains, we found that the cytosolic domains from Megf10 and FcRÉ£ robustly triggered engulfment independently of their native extracellular domain. We show that CAR-Ps drive specific engulfment of antigen-coated synthetic particles and whole human cancer cells. Addition of a tandem PI3K recruitment domain increased cancer cell engulfment. Finally, we show that CAR-P expressing murine macrophages reduce cancer cell number in co-culture by over 40%.


Subject(s)
Phagocytosis , Receptors, Chimeric Antigen/metabolism , Animals , Antigens, CD19/metabolism , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Humans , Immunological Synapses , Macrophages/metabolism , Mice , Microspheres , NIH 3T3 Cells , Phosphorylation , Signal Transduction , Silicon Dioxide
16.
Nat Med ; 24(5): 541-550, 2018 05.
Article in English | MEDLINE | ID: mdl-29686425

ABSTRACT

The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient's tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.


Subject(s)
Immunotherapy , Tumor Microenvironment/immunology , Genotype , Humans , Neoplasm Metastasis , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Phenotype
17.
ACS Chem Biol ; 12(4): 1001-1010, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28191924

ABSTRACT

The use of coumarin caged molecules has been well documented in numerous photocaging applications including for the spatiotemporal control of Cre-estrogen receptor (Cre-ERT2) recombinase activity. In this article, we report that 4-hydroxytamoxifen (4OHT) caged with coumarin via a conventional ether linkage led to an unexpected photo-Claisen rearrangement which significantly competed with the release of free 4OHT. The basis for this unwanted reaction appears to be related to the coumarin structure and its radical-based mechanism of uncaging, as it did not occur in ortho-nitrobenzyl (ONB) caged 4OHT that was otherwise linked in the same manner. In an effort to perform design optimization, we introduced a self-immolative linker longer than the ether linkage and identified an optimal linker which allowed rapid 4OHT release by both single-photon and two-photon absorption mechanisms. The ability of this construct to actively control Cre-ERT2 mediated gene modifications was investigated in mouse embryonic fibroblasts (MEFs) in which the expression of a green fluorescent protein (GFP) reporter dependent gene recombination was controlled by 4OHT release and measured by confocal fluorescence microscopy and flow cytometry. In summary, we report the implications of this photo-Claisen rearrangement in coumarin caged compounds and demonstrate a rational linker strategy for addressing this unwanted side reaction.


Subject(s)
Coumarins/chemistry , Photochemistry , Tamoxifen/analogs & derivatives , Animals , Cells, Cultured , Chromatography, Liquid/methods , Kinetics , Mice , Selective Estrogen Receptor Modulators/chemistry , Spectrum Analysis/methods , Tamoxifen/chemistry
18.
Cell Metab ; 24(5): 672-684, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27829137

ABSTRACT

In patients with cancer, the wasting syndrome, cachexia, is associated with caloric deficiency. Here, we describe tumor-induced alterations of the host metabolic response to caloric deficiency that cause intratumoral immune suppression. In pre-cachectic mice with transplanted colorectal cancer or autochthonous pancreatic ductal adenocarcinoma (PDA), we find that IL-6 reduces the hepatic ketogenic potential through suppression of PPARalpha, the transcriptional master regulator of ketogenesis. When these mice are challenged with caloric deficiency, the resulting relative hypoketonemia triggers a marked rise in glucocorticoid levels. Multiple intratumoral immune pathways are suppressed by this hormonal stress response. Moreover, administering corticosterone to elevate plasma corticosterone to a level that is lower than that occurring in cachectic mice abolishes the response of mouse PDA to an immunotherapy that has advanced to clinical trials. Therefore, tumor-induced IL-6 impairs the ketogenic response to reduced caloric intake, resulting in a systemic metabolic stress response that blocks anti-cancer immunotherapy.


Subject(s)
Cellular Reprogramming , Immunity , Interleukin-6/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Cachexia/immunology , Cachexia/metabolism , Cachexia/pathology , Caloric Restriction , Glucocorticoids/metabolism , Immunotherapy , Interleukin-6/deficiency , Ketosis/complications , Ketosis/pathology , Liver/metabolism , Male , Mice, Inbred BALB C , Neutralization Tests , Pancreatic Neoplasms/pathology , Stress, Physiological , Pancreatic Neoplasms
19.
Cancer Cell ; 30(2): 324-336, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27424807

ABSTRACT

Intratumoral dendritic cells (DC) bearing CD103 in mice or CD141 in humans drive intratumoral CD8(+) T cell activation. Using multiple strategies, we identified a critical role for these DC in trafficking tumor antigen to lymph nodes (LN), resulting in both direct CD8(+) T cell stimulation and antigen hand-off to resident myeloid cells. These effects all required CCR7. Live imaging demonstrated direct presentation to T cells in LN, and CCR7 loss specifically in these cells resulted in defective LN T cell priming and increased tumor outgrowth. CCR7 expression levels in human tumors correlate with signatures of CD141(+) DC, intratumoral T cells, and better clinical outcomes. This work identifies an ongoing pathway to T cell priming, which should be harnessed for tumor therapies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Melanoma/immunology , Receptors, CCR7/immunology , Animals , Antigen Presentation , Antigens, CD/immunology , Antigens, Neoplasm/immunology , Antigens, Surface/immunology , Cell Movement/immunology , Dendritic Cells/pathology , Humans , Integrin alpha Chains/immunology , Lymph Nodes/immunology , Lymph Nodes/pathology , Melanoma/pathology , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Thrombomodulin
20.
Nature ; 531(7595): 513-7, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26982733

ABSTRACT

Lung metastasis is the lethal determinant in many cancers and a number of lines of evidence point to monocytes and macrophages having key roles in its development. Yet little is known about the immediate fate of incoming tumour cells as they colonize this tissue, and even less known about how they make first contact with the immune system. Primary tumours liberate circulating tumour cells (CTCs) into the blood and we have developed a stable intravital two-photon lung imaging model in mice for direct observation of the arrival of CTCs and subsequent host interaction. Here we show dynamic generation of tumour microparticles in shear flow in the capillaries within minutes of CTC entry. Rather than dispersing under flow, many of these microparticles remain attached to the lung vasculature or independently migrate along the inner walls of vessels. Using fluorescent lineage reporters and flow cytometry, we observed 'waves' of distinct myeloid cell subsets that load differentially and sequentially with this CTC-derived material. Many of these tumour-ingesting myeloid cells collectively accumulated in the lung interstitium along with the successful metastatic cells and, as previously understood, promote the development of successful metastases from surviving tumour cells. Although the numbers of these cells rise globally in the lung with metastatic exposure and ingesting myeloid cells undergo phenotypic changes associated with microparticle ingestion, a consistently sparse population of resident conventional dendritic cells, among the last cells to interact with CTCs, confer anti-metastatic protection. This work reveals that CTC fragmentation generates immune-interacting intermediates, and defines a competitive relationship between phagocyte populations for tumour loading during metastatic cell seeding.


Subject(s)
Cell Movement , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Lung/immunology , Lung/pathology , Neoplasm Metastasis/immunology , Neoplasm Metastasis/pathology , Animals , Capillaries/pathology , Cell Line, Tumor , Cell Lineage , Dendritic Cells/cytology , Dendritic Cells/immunology , Female , Genes, Reporter/genetics , Humans , Lung/blood supply , Lung/cytology , Lung Neoplasms/pathology , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Microscopy, Confocal , Myeloid Cells/cytology , Neoplastic Cells, Circulating/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...