Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 11(1): 10045, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976348

ABSTRACT

Human alteration of landscapes leads to attrition of biodiversity. Recommendations for maximizing retention of species richness typically focus on protection and preservation of large habitat patches. Despite a century of protection from human disturbance, 27% of the 228 bird species initially detected on Barro Colorado Island (BCI), Panama, a large hilltop forest fragment isolated by waters of Gatun Lake, are now absent. Lost species were more likely to be initially uncommon and terrestrial insectivores. Analyses of the regional avifauna, exhaustively inventoried and mapped across 24 subregions, identified strong geographical discontinuities in species distributions associated with a steep transisthmian rainfall gradient. Having lost mostly species preferring humid forests, the BCI species assemblage continues to shift from one originally typical of wetter forests toward one now resembling bird communities in drier forests. Even when habitat remnants are large and protected for 100 years, altered habitat characteristics resulting from isolation produce non-random loss of species linked with their commonness, dietary preferences and subtle climatic sensitivities.


Subject(s)
Biodiversity , Birds , Extinction, Biological , Rainforest , Animals , Cluster Analysis , Diet , Panama , Population Density , Tropical Climate
2.
Ecology ; 101(12): e03176, 2020 12.
Article in English | MEDLINE | ID: mdl-32870500

ABSTRACT

The spatial habitat heterogeneity hypothesis posits that habitat complexity increases the abundance and diversity of species. In tropical forests, lianas add substantial habitat heterogeneity and complexity throughout the vertical forest profile, which may maintain animal abundance and diversity. The effects of lianas on tropical animal communities, however, remain poorly understood. We propose that lianas have a positive effect on animals by enhancing habitat complexity. Lianas may have a particularly strong influence on the forest bird community, providing nesting substrate, protection from predators, and nutrition (food). Understory insectivorous birds, which forage for insects that specialize on lianas, may particularly benefit. Alternatively, it is possible that lianas have a negative effect on forest birds by increasing predator abundances and providing arboreal predators with travel routes with easy access to bird nests. We tested the spatial habitat heterogeneity hypothesis on bird abundance and diversity by removing lianas, thus reducing forest complexity, using a large-scale experimental approach in a lowland tropical forest in the Republic of Panama. We found that removing lianas decreased total bird abundance by 78.4% and diversity by 77.4% after 8 months, and by 40.0% and 51.7%, respectively, after 20 months. Insectivorous bird abundance and diversity 8 months after liana removal were 91.8% and 89.5% lower, respectively, indicating that lianas positively influence insectivorous birds. The effects of liana removal persisted longer for insectivorous birds than other birds, with 77.3% lower abundance and 76.2% lower diversity after 20 months. Liana removal also altered bird community composition, creating two distinct communities in the control and removal plots, with disproportionate effects on insectivores. Our findings demonstrate that lianas have a strong positive influence on the bird community, particularly for insectivorous birds in the forest understory. Lianas may maintain bird abundance and diversity by increasing habitat complexity, habitat heterogeneity, and resource availability.


Subject(s)
Forests , Tropical Climate , Animals , Birds , Ecosystem , Panama , Trees
3.
PLoS One ; 15(8): e0233627, 2020.
Article in English | MEDLINE | ID: mdl-32804928

ABSTRACT

We studied avian development in 49 to 153 species of temperate and tropical New World passerine birds to determine how growth rates, and incubation and nestling periods, varied in relation to other life-history traits. We collected growth data and generated unbiased mass and tarsus growth rate estimates (mass n = 92 species, tarsus n = 49 species), and measured incubation period (n = 151) and nestling period (n = 153), which we analyzed with respect to region, egg mass, adult mass, clutch size, parental care type, nest type, daily nest predation rate (DMR), and nest height. We investigated covariation of life-history and natural-history attributes with the four development traits after controlling for phylogeny. Species in our lowland tropical sample grew 20% (incubation period), 25% (mass growth rate), and 26% (tarsus growth rate) more slowly than in our temperate sample. Nestling period did not vary with respect to latitude, which suggests that tropical songbirds fledge in a less well-developed state than temperate species. Suboscine species typically exhibited slower embryonic and post-embryonic growth than oscine passerines regardless of their breeding region. This pattern of slow development in tropical species could reflect phylogenetic effects based on unknown physiological attributes. Time-dependent nest mortality was unrelated to nestling mass growth rate, tarsus growth rate, and incubation period, but was significantly associated with nestling period. This suggests that nest predation, the predominant cause of nest loss in songbirds, does not exert strong selection on physiologically constrained traits, such as embryonic and post-embryonic growth, among our samples of temperate and lowland tropical songbird species. Nestling period, which is evolutionarily more labile than growth rate, was significantly shorter in birds exposed to higher rates of nest loss and nesting at lower heights, among other traits. Differences in life-history variation across latitudes provide insight into how unique ecological characteristics of each region influence physiological processes of passerines, and thus, how they can shape the evolution of life histories. While development traits clearly vary with respect to latitude, trait distributions overlap broadly. Life-history and natural history associations differ for each development trait, which suggests that unique selective pressures or constraints influence the evolution of each trait.


Subject(s)
Songbirds/growth & development , Animals , Biological Evolution , Climate , Clutch Size , Discriminant Analysis , Ecosystem , Female , Life History Traits , Linear Models , Male , Michigan , Models, Biological , Nesting Behavior/physiology , Oregon , Panama , Phylogeny , Predatory Behavior/physiology , Reproduction/physiology , Selection, Genetic , Songbirds/classification , Songbirds/physiology , Species Specificity , Tarsus, Animal/growth & development , Tropical Climate
4.
Ecology ; 95(8): 2202-12, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25230471

ABSTRACT

Loss of native vegetation cover is thought to be a major driver of declines in pollination success worldwide. However, it is not well known whether reducing the fragmentation of remaining vegetation can ameliorate these negative effects. We tested the independent effects of composition vs. configuration on the reproductive success of a keystone tropical forest herb (Heliconia tortuosa). To do this we designed a large-scale mensurative experiment that independently varied connected forest-patch size (configuration) and surrounding amount of forest (composition). In each patch, we tested whether pollen tubes, fruit, and seed set were associated with these landscape variables. We also captured hummingbirds as an indication of pollinator availability in a subset of patches according to the same design. We found evidence for an effect of configuration on seed set of H. tortuosa, but not on other aspects of plant reproduction; proportion of seeds produced increased 40% across the gradient in patch size we observed (0.64 to > 1300 ha), independent of the amount of forest in the surrounding landscape at both local and landscape scales. We also found that the availability of pollinators was dependent upon forest configuration; hummingbird capture rates increased three and one-half times across the patch size gradient, independent of forest amount. Finally, pollinator availability was strongly positively correlated with seed set. We hypothesize that the effects of configuration on plant fitness that we observed are due to reduced pollen quality resulting from altered hummingbird availability and/or movement behavior. Our results suggest that prioritizing larger patches of tropical forest may be particularly important for conservation of this species.


Subject(s)
Birds/physiology , Heliconiaceae/physiology , Pollination/physiology , Trees , Tropical Climate , Animals , Costa Rica , Demography , Ecosystem , Environmental Monitoring
5.
Ecol Appl ; 24(8): 2122-31, 2014.
Article in English | MEDLINE | ID: mdl-29188685

ABSTRACT

Translocation experiments, in which researchers displace animals and then monitor their movements to return home, are commonly used as tools to assess functional connectivity of fragmented landscapes. Such experiments are purported to have important advantages of being time efficient and of standardizing "motivation" to move across individuals. Yet, we lack tests of whether movement behavior of translocated birds reflects natural behavior of unmanipulated birds. We compared the routine movement behavior of a tropical hummingbird, the Green Hermit (Phaethornis guy), to that of experimentally translocated individuals. We tested for differences in site selection patterns during movement at two spatial scales (point and path levels). We also compared movement rates between treatments. Behaviors documented during translocation experiments reflected those observed during routine movements. At the point level, both translocated and non-translocated birds showed similar levels of preference for mature tropical forest. At the path level, step selection functions showed both translocated and non-translocated hummingbirds avoiding movement across non-forested matrix and selecting streams as movement corridors. Movement rates were generally higher during translocation experiments. However, the negative influence of forest cover on movement rates was proportionately similar in translocation and routine movement treatments. We report the first evidence showing that movement behavior of birds during translocation experiments is similar to their natural movement behavior. Therefore, translocation experiments may be reliable tools to address effects of landscape structure on animal movement. We observed consistent selection of landscape elements between translocated and non-translocated birds, indicating that both routine and translocation movement studies lead to similar conclusions regarding the effect of landscape structure and forest composition on functional connectivity. Our observation that hummingbirds avoid non-forest matrix and select riparian corridors also provides a potential mechanism for pollen limitation in fragmented tropical forest.


Subject(s)
Birds/physiology , Homing Behavior/physiology , Motor Activity/physiology , Animals , Conservation of Natural Resources , Costa Rica , Ecosystem , Female , Male , Telemetry , Time Factors , Tropical Climate
6.
J Anim Ecol ; 80(3): 640-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21219328

ABSTRACT

1. Species' geographical ranges can be limited by a variety of biotic and abiotic factors. Physiological challenge in response to unsuitable environmental conditions can establish limits to geographical ranges. 2. We studied the physiology of Song Wrens (Cyphorhinus phaeocephalus) across their geographical range on the isthmus of Panama, an area characterized by a strong rainfall gradient. Wrens are common on the Caribbean slope of the isthmus where annual rainfall is greatest, but wren abundance declines towards the south as annual rainfall declines. Song Wrens are completely absent from the driest third of the isthmus. 3. We searched for the existence of a physiologically induced distribution limit by measuring body condition (an integrative measure of energy balance), hematocrit (% packed red blood cells in a given blood sample), and corticosterone levels (CORT, a steroid hormone that regulates the availability of energy and the endocrine stress response) in males and females. We caught birds by luring them into nets when they responded to playback of conspecific song. 4. Wrens living in drier habitat near the geographical range edge were significantly more likely to have abnormally low hematocrit scores. Baseline CORT levels were negatively associated with rainfall in one of our three best-fit path models, indicating potential energetic challenge in some individuals. Maximum CORT levels during a 60-min period of restraint correlated significantly only with sex, being higher in females. Birds with the poorest body condition lived at the dry end of the gradient. Birds on the wet end of the gradient responded fastest to conspecific song. 5. Environmental conditions vary across geographical ranges and may influence the physiological conditions of organisms, thereby enforcing limits to species' distributions. Highly specialized species, such as birds of the rain forest understory, may be especially susceptible to environmental variation associated with changing climatic conditions.


Subject(s)
Homing Behavior/physiology , Songbirds/physiology , Animals , Body Size , Corticosterone/blood , Ecosystem , Female , Hematocrit , Male , Models, Biological , Panama , Phylogeography , Rain , Songbirds/blood , Tropical Climate
7.
Ecol Appl ; 19(6): 1614-27, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19769107

ABSTRACT

One of the key concerns in conservation is to document and predict the effects of habitat loss on species richness. To do this, the species-area relationship (SAR) is frequently used. That relationship assumes random patterns of habitat loss and species distributions. In nature, however, species distribution patterns are usually nonrandom, influenced by biotic and abiotic factors. Likewise, socioeconomic and environmental factors influence habitat loss and are not randomly distributed across landscapes. We used a recently developed SAR model that accounts for nonrandomness to predict rates of bird species loss in fragmented forests of the Panama Canal region, an area that was historically covered in forest but now has 53% forest cover. Predicted species loss was higher than that predicted by the standard SAR. Furthermore, a species loss threshold was evident when remaining forest cover declined by 25%. This level of forest cover corresponds to 40% of the historical forest cover, and our model predicts rapid species loss past that threshold. This study illustrates the importance of considering patterns of species distributions and realistic habitat loss scenarios to develop better estimates of losses in species richness. Forecasts of tropical biodiversity loss generated from simple species-area relationships may underestimate actual losses because nonrandom patterns of species distributions and habitat loss are probably not unique to the Panama Canal region.


Subject(s)
Biodiversity , Birds , Animals , Conservation of Natural Resources , Extinction, Biological , Models, Biological , Panama Canal Zone , Tropical Climate
8.
Am Nat ; 172(2): 178-93, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18624664

ABSTRACT

Antioxidants play an important role in protecting tissues against aging-associated oxidative damage and are thus prime candidates for relating physiological mechanisms to variation in life histories. We measured total antioxidant capacity, antioxidant response to stress, and levels of uric acid, vitamin E, and four carotenoids in 95 avian species, mostly passerines from Michigan or Panama. We compared antioxidant measures to seven variables related to life histories (clutch size, survival rate, incubation period, nestling period, basal metabolic rate, body mass, and whether the species lived in a tropical or temperate climate). Life-history-related traits varied over at least three statistically independent axes. Higher antioxidant levels were generally characteristic of more rapid development, lower survival rate, smaller body size, larger clutch size, and higher mass-adjusted metabolic rate, but the relationships of particular antioxidants with individual life-history traits showed considerable complexity. Antioxidant-life history associations differed between tropical and temperate species and varied with respect to taxonomic sampling. Vitamin E showed few relationships with life-history traits. Overall, our results partly support the hypothesis that antioxidant levels evolve to mirror free radical production. Clearly, however, the complex patterns of physiological diversification observed here result from the interplay of many factors, likely including not just investment in somatic maintenance but also phylogenetic constraint, diet, and other aspects of ecology.


Subject(s)
Antioxidants/metabolism , Basal Metabolism , Birds/blood , Clutch Size , Longevity , Animals , Birds/anatomy & histology , Birds/growth & development , Body Size , Carotenoids/blood , Ecosystem , Michigan , Nesting Behavior , Panama , Phylogeny , Principal Component Analysis , Stress, Physiological/blood , Tropical Climate , Uric Acid/blood , Vitamin E/blood
SELECTION OF CITATIONS
SEARCH DETAIL