Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Carbohydr Polym ; 164: 317-324, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28325332

ABSTRACT

Wheat straw has been used as a source of hemicelluloses (WSH) and cellulose nanocrystals (CNC) for the elaboration of biodegradable films. Different films have been formed by using WSH as a matrix and different contents of CNC and citric acid. The predominant hemicelluloses were arabinoxylans. CNC reinforced the films, improving tensile strength and modulus, water resistance and water vapor barrier. Citric acid, on the other hand, presented concomitant plasticizing and crosslinking effects (the latter also evidenced by FTIR), probably due to a crosslinking extension by glycerol. The use of 5.9wt% CNC and 30wt% citric acid was defined as optimal conditions, resulting in minimum water sensitivity and permeability, while maintaining a good combination of tensile properties. Under those conditions, the films presented enhanced modulus, elongation, water resistance, and barrier to water vapor when compared to the control WSH film, and might be used for wrapping or coating a variety of foods.

2.
Appl Biochem Biotechnol ; 137-140(1-12): 675-88, 2007 Apr.
Article in English | MEDLINE | ID: mdl-18478425

ABSTRACT

The ability of Aspergillus oryzae for the production of tannase by solid state fermentation was investigated using cashew apple bagasse (CAB) as substrate. The effect of initial water content was studied and maximum enzyme production was obtained when 60 mL of water was added to 100.0 g of CAB. The fungal strain was able to grow on CAB without any supplementation but a low enzyme activity was obtained, 0.576 U/g of dry substrate (g(ds)). Optimization of process parameters such as supplementation with tannic acid, phosphorous, and different organic and inorganic nitrogen sources was studied. The addition of tannic acid affected the enzyme production and maximum tannase activity (2.40 U/g(ds)) was obtained with 2.5% (w/w) supplementation. Supplementation with ammonium nitrate, peptone, and yeast extract exerted no influence on tannase production. Ammonium sulphate improved the enzyme production in 3.75-fold compared with control. Based on the experimental results, CAB is a promising substrate for solid state fermentation, enabling A. oryzae growth and the production of tannase, with a maximum activity of 3.42 U/g(ds) and enzyme productivity of 128.5x10(-3) U x g(ds)(-1) x h(-1).


Subject(s)
Anacardium/microbiology , Aspergillus oryzae/enzymology , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Cellulose/metabolism , Fruit/microbiology , Enzyme Activation , Enzyme Stability , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL