Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 14(1): 307, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054328

ABSTRACT

Activity-dependent neuroprotective protein (ADNP) syndrome is a rare neurodevelopmental disorder resulting in intellectual disability, developmental delay and autism spectrum disorder (ASD) and is due to mutations in the ADNP gene. Ketamine treatment has emerged as a promising therapeutic option for ADNP syndrome, showing safety and apparent behavioral improvements in a first open label study. However, the molecular perturbations induced by ketamine remain poorly understood. Here, we investigated the longitudinal effect of ketamine on the blood transcriptome of 10 individuals with ADNP syndrome. Transcriptomic profiling was performed before and at multiple time points after a single low-dose intravenous ketamine infusion (0.5 mg/kg). We show that ketamine triggers immediate and profound gene expression alterations, with specific enrichment of monocyte-related expression patterns. These acute alterations encompass diverse signaling pathways and co-expression networks, implicating upregulation of immune and inflammatory-related processes and down-regulation of RNA processing mechanisms and metabolism. Notably, these changes exhibit a transient nature, returning to baseline levels 24 hours to 1 week after treatment. These findings enhance our understanding of ketamine's molecular effects and lay the groundwork for further research elucidating its specific cellular and molecular targets. Moreover, they contribute to the development of therapeutic strategies for ADNP syndrome and potentially, ASD more broadly.


Subject(s)
Autism Spectrum Disorder , Ketamine , Transcriptome , Ketamine/pharmacology , Ketamine/administration & dosage , Ketamine/therapeutic use , Humans , Male , Transcriptome/drug effects , Child , Female , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/blood , Child, Preschool , Nerve Tissue Proteins/genetics , Intellectual Disability/drug therapy , Intellectual Disability/genetics , Developmental Disabilities/genetics , Developmental Disabilities/drug therapy , Gene Expression Profiling , Adolescent , Homeodomain Proteins
3.
Nat Commun ; 15(1): 5366, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926387

ABSTRACT

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries offer more nuanced and accurate insights into the regulatory mechanisms of RNA editing in the human brain.


Subject(s)
Adenosine Deaminase , Adenosine , Autopsy , Brain , Inosine , RNA Editing , RNA-Binding Proteins , Humans , Adenosine/metabolism , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Brain/metabolism , Inosine/metabolism , Inosine/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Prefrontal Cortex/metabolism , Postmortem Changes , Male
4.
Genet Med ; 24(9): 1927-1940, 2022 09.
Article in English | MEDLINE | ID: mdl-35670808

ABSTRACT

PURPOSE: In this study we aimed to identify the molecular genetic cause of a progressive multisystem disease with prominent lipodystrophy. METHODS: In total, 5 affected individuals were investigated using exome sequencing. Dermal fibroblasts were characterized using RNA sequencing, proteomics, immunoblotting, immunostaining, and electron microscopy. Subcellular localization and rescue studies were performed. RESULTS: We identified a lipodystrophy phenotype with a typical facial appearance, corneal clouding, achalasia, progressive hearing loss, and variable severity. Although 3 individuals showed stunted growth, intellectual disability, and died within the first decade of life (A1, A2, and A3), 2 are adults with normal intellectual development (A4 and A5). All individuals harbored an identical homozygous nonsense variant affecting the retention and splicing complex component BUD13. The nucleotide substitution caused alternative splicing of BUD13 leading to a stable truncated protein whose expression positively correlated with disease expression and life expectancy. In dermal fibroblasts, we found elevated intron retention, a global reduction of spliceosomal proteins, and nuclei with multiple invaginations, which were more pronounced in A1, A2, and A3. Overexpression of both BUD13 isoforms normalized the nuclear morphology. CONCLUSION: Our results define a hitherto unknown syndrome and show that the alternative splice product converts a loss-of-function into a hypomorphic allele, thereby probably determining the severity of the disease and the survival of affected individuals.


Subject(s)
Alternative Splicing , Lipodystrophy , RNA-Binding Proteins/genetics , Child , Developmental Disabilities/genetics , Humans , Introns , Lipodystrophy/genetics , RNA Splicing
5.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33402532

ABSTRACT

Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available. Therefore, we used CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice. Mirroring the human pathology, mutant Pigv341E mice exhibited deficits in motor coordination, cognitive impairments, and alterations in sociability and sleep patterns, as well as increased seizure susceptibility. Furthermore, immunohistochemistry revealed reduced synaptophysin immunoreactivity in Pigv341E mice, and electrophysiology recordings showed decreased hippocampal synaptic transmission that could underlie impaired memory formation. In single-cell RNA sequencing, Pigv341E-hippocampal cells exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction in Abl1 transcript levels in several cell clusters suggested a link to the signaling pathway of GPI-anchored ephrins. We also observed elevated levels of Hdc transcripts, which might affect histamine metabolism with consequences for circadian rhythm. This mouse model will not only open the doors to further investigation into the pathophysiology of GPIBD, but will also deepen our understanding of the role of GPI-anchor-related pathways in brain development.


Subject(s)
Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Mannosyltransferases/metabolism , Abnormalities, Multiple/genetics , Amino Acid Sequence , Amino Acids/genetics , Animals , CRISPR-Cas Systems , Disease Models, Animal , Epilepsy/genetics , Glycosylphosphatidylinositols/deficiency , Hippocampus/metabolism , Intellectual Disability/genetics , Mannosyltransferases/physiology , Mice , Mice, Inbred C57BL , Mutation , Mutation, Missense , Phenotype , Protein Engineering/methods , Seizures/genetics , Seizures/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL