Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
ACS Biomater Sci Eng ; 10(3): 1808-1818, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38411100

ABSTRACT

Bacteria are an old concern to human health, as they are responsible for nosocomial infections, and the number of antibiotic-resistant microorganisms keeps growing. Copper is known for its intrinsic biocidal properties, and therefore, it is a promising material to combat infections when added to surfaces. However, its biocidal properties in the presence of light illumination have not been fully explored, especially regarding the use of microsized particles since nanoparticles have taken over all fields of research and subjugated microparticles despite them being abundant and less expensive. Thus, the present work studied the bactericidal properties of metallic copper particles, in microscale (CuMPs) and nanoscale (CuNPs), in the absence of light and under white LED light illumination. The minimum bactericidal concentration (MBC) of CuMPs against Staphylococcus aureus that achieved a 6-log reduction was 5.0 and 2.5 mg mL-1 for assays conducted in the absence of light and under light illumination, respectively. Similar behavior was observed against Escherichia coli. The bactericidal activity under illumination provided a percentage increase in log reduction values of 65.2% for S. aureus and 166.7% for E. coli when compared to the assays under dark. This assay reproduced the testing CuNPs, which showed superior bactericidal activity since the concentration of 2.5 mg mL-1 promoted a 6-log reduction of both bacteria even under dark. Its superior bactericidal activity, which overcame the effect of illumination, was expected once the nanoscale facilitated the interaction of copper within the surface of bacteria. The results from MBC were supported by fluorescence microscopy and atomic absorption spectroscopy. Therefore, CuMPs and CuNPs proved to have size- and dose-dependent biocidal activity. However, we have shown that CuMPs photoactivity is competitive compared to that of CuNPs, allowing their application as a self-cleaning material for disinfection processes assisted by conventional light sources without additives to contain the spread of pathogens.


Subject(s)
Copper , Staphylococcus aureus , Humans , Copper/pharmacology , Copper/chemistry , Escherichia coli , Lighting , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria
2.
Mastology (Online) ; 332023. ilus, tab
Article in English | LILACS | ID: biblio-1433826

ABSTRACT

:Breast cancer is the object of thousands of studies worldwide. Nevertheless, few tools are available to corroborate prediction of response to neoadjuvant chemotherapy. Artificial intelligence is being researched for its potential utility in several fields of knowledge, including oncology. The development of a standardized Artificial intelligence-based predictive model for patients with breast cancer may help make clinical management more personalized and effective. We aimed to apply Artificial intelligence models to predict the response to neoadjuvant chemotherapy based solely on clinical and pathological data. Methods: Medical records of 130 patients treated with neoadjuvant chemotherapy were reviewed and divided into two groups: 90 samples to train the network and 40 samples to perform prospective testingand validate the results obtained by the Artificial intelligence method. Results: Using clinicopathologic data alone, the artificial neural network was able to correctly predict pathologic complete response in 83.3% of the cases. It also correctly predicted 95.6% of locoregional recurrence, as well as correctly determined whether patients were alive or dead at a given time point in 90% of the time. To date, no published research has used clinicopathologic data to predict the response to neoadjuvant chemotherapy in patients with breast cancer, thus highlighting the importance of the present study. Conclusions: Artificial neural network may become an interesting tool for predicting response to neoadjuvant chemotherapy, locoregional recurrence, systemic disease progression, and survival in patients with breast cancer (AU)


Subject(s)
Humans , Female , Middle Aged , Breast Neoplasms/drug therapy , Artificial Intelligence , Neoadjuvant Therapy , Antineoplastic Agents/therapeutic use , Progesterone/metabolism , Retrospective Studies , Neural Networks, Computer , Receptor, ErbB-2/metabolism , Ki-67 Antigen/metabolism , Estrogens/metabolism , Neoplasm Recurrence, Local
3.
Article in English | MEDLINE | ID: mdl-34454693

ABSTRACT

The sodium valproate has been largely used as an anti-epilepsy drug and, recently, as a putative drug in cancer therapy. However, the treatment with sodium valproate has some adverse effects. In this sense, more effective and secure complexes than sodium valproate should be explored in searching for new active drugs. This study aims to evaluate the cytotoxicity of sodium valproate, mixed ternary mononuclear Cu(II) complexes based on valproic acid (VA) with 1,10-phenanthroline (Phen) or 2,2'- bipyridine (Bipy) ligands - [Cu2(Valp)4], [Cu(Valp)2Phen] and [Cu(Valp)2Bipy] - in yeast Saccharomyces cerevisiae, proficient or deficient in different repair pathways, such as base excision repair (BER), nucleotide excision repair (NER), translesion synthesis (TLS), DNA postreplication repair (PRR), homologous recombination (HR) and non-homologous end-joining (NHEJ). The results indicated that the Cu(II) complexes have higher cytotoxicity than sodium valproate in the following order: [Cu(Valp)2Phen] > [Cu(Valp)2Bipy] > [Cu2(Valp)4] > sodium valproate. The treatment with Cu(II) complexes and sodium valproate induced mutations in S. cerevisiae. The data indicated that yeast strains deficient in BER (Ogg1p), NER (complex Rad1p-Rad10p) or TLS (Rev1p, Rev3p and Rad30p) proteins are associated with increased sensitivity to sodium valproate. The BER mutants (ogg1Δ, apn1Δ, rad27Δ, ntg1Δ and ntg2Δ) showed increased sensitivity to Cu(II) complexes. DNA damage induced by the complexes requires proteins from NER (Rad1p and Rad10p), TLS (Rev1p, Rev3p and Rad30p), PRR (Rad6 and Rad18p) and HR (Rad52p and Rad50p) for efficient repair. Therefore, Cu(II) complexes display enhanced cytotoxicity when compared to the sodium valproate and induce distinct DNA lesions, indicating a potential application as cytotoxic agents.


Subject(s)
Copper/pharmacology , DNA Repair/drug effects , Pharmaceutical Preparations/administration & dosage , Phenanthrolines/pharmacology , Saccharomyces cerevisiae/drug effects , Valproic Acid/pharmacology , DNA/drug effects , DNA Damage/drug effects , DNA Replication/drug effects , Ligands , Mutation/drug effects , Recombination, Genetic/drug effects
4.
ACS Biomater Sci Eng ; 7(8): 3683-3695, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34291900

ABSTRACT

Ti6Al4V is one of the most lightweight, mechanically resistant, and appropriate for biologically induced corrosion alloys. However, surface properties often must be tuned for fitting into biomedical applications, and therefore, surface modification is of paramount importance to carry on its use. This work compares the interaction between two different cell lines (L929 fibroblasts and osteoblast-like MG63) and medical grade Ti6Al4V after surface modification by plasma nitriding or thin film deposition. We studied the adhesion of these two cell lines, exploring which trends are consistent for cell behavior, correlating with osseointegration and in vivo conditions. Modified surfaces were analyzed through several physicochemical characterization techniques. Plasma nitriding led to a more pronounced increase in surface roughness, a thicker aluminum-free layer, made up of diverse titanium nitride phases, whereas thin film deposition resulted in a single-phase pure titanium nitride layer that leveled the ridged topography. The selective adhesion of osteoblast-like cells over fibroblasts was observed in nitrided samples but not in thin film deposited films, indicating that the competitive cellular behavior is more pronounced in plasma nitrided surfaces. The obtained coatings presented an appropriate performance for its use in biomedical-aimed applications, including the possibility of a higher success rate in osseointegration of implants.


Subject(s)
Coated Materials, Biocompatible , Alloys , Corrosion , Surface Properties , Cell Line , Animals , Mice , Humans
5.
Environ Sci Pollut Res Int ; 28(48): 69416-69425, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34302239

ABSTRACT

Nanoparticles such as zinc oxide nanoparticles (ZnO-NP) that are incorporated in consumer and industrial products have caused concern about their potential ecotoxicological impact when released into the environment. Bivalve mollusks are susceptible targets for nanoparticle toxicity since nanomaterials can enter the cells by endocytosis mechanisms. The aim of this study was to evaluate the influence of ZnO-NP on the redox metabolism in Limnoperna fortunei and the DNA damage after exposure to ZnO-NP. Adult bivalves were incubated with 1-, 10-, and 50-µg mL-1 ZnO-NP for 2, 4, and 24 h. Ionic Zn release, enzymatic and non-enzymatic antioxidant activity, oxidative damage, and DNA damage were evaluated. Oxidative damage to proteins and lipids were observed after 4-h exposure and returned to baseline levels after 24 h. Superoxide dismutase levels decreased after 4-h exposure and increased after 24 h. No significant alteration was observed in the catalase activity or even DNA double-strand cleavage. The dissociation of ZnO may occur after 24 h, releasing ionic zinc (Zn2+) by hydrolysis, which was confirmed by the increase in the ionic Zn concentration following 24-h exposure. In conclusion, ZnO-NP were able to induce oxidative stress in exposed golden mussels. The golden mussel can modulate its own antioxidant defenses in response to oxidative stress and seems to be able to hydrolyze the nanoparticles and consequently, release Zn2+ into the cellular compartment.


Subject(s)
Metal Nanoparticles , Mytilidae , Nanoparticles , Zinc Oxide , Animals , Oxidation-Reduction , Oxidative Stress
6.
Materials (Basel) ; 14(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072271

ABSTRACT

Wound infections are the main complication when treating skin wounds. This work reports a novel antimicrobial material using green synthesized zinc oxide nanoparticles (ZnONPs) incorporated in polymeric fibers for wound healing purposes. ZnONPs are a promising antimicrobial nanomaterial with high activity against a range of microorganisms, including drug-resistant bacteria. The electrospun fibers were obtained using polyacrylic acid (PAA) and polyallylamine hydrochloride (PAH) and were loaded with ZnONPs green synthesized from Ilex paraguariensis leaves with a spherical shape and ~18 nm diameter size. The fibers were produced using the electrospinning technique and SEM images showed a uniform morphology with a diameter of ~230 nm. EDS analysis proved a consistent dispersion of Zn in the fiber mat, however, particle agglomerates with varying sizes were observed. FTIR spectra confirmed the interaction of PAA carboxylic groups with the amine of PAH molecules. Although ZnONPs presented higher antimicrobial activity against S. aureus than E. coli, resazurin viability assay revealed that the PAA/PAH/ZnONPs composite successfully inhibited both bacteria strains growth. Photomicrographs support these results where bacteria clusters were observed only in the control samples. The PAA/PAH/ZnONPs composite developed presents antimicrobial activity and mimics the extracellular matrix morphology of skin tissue, showing potential for wound healing treatments.

7.
J Biomater Appl ; 36(2): 252-263, 2021 08.
Article in English | MEDLINE | ID: mdl-33906516

ABSTRACT

Given the global panorama of demands in the health area, the development of biomaterials becomes irreducible for the maintenance and/or improvement in the quality of life of the human being. Aiming to reduce the impacts related to infections in the healing processes of the dermal structure, the present work proposes the development of polydimethylsiloxane (PDMS) based membranes with the incorporated polyhexamethylenebiguanide (PHMB) antimicrobial agent. In the present study, the antimicrobial and antibiofilm properties of polydimethylsiloxane (PDMS) films incorporated with 0.1, 0.3, and 0.5% (w/w) of polyhexamethylene biguanide (PHMB) were evaluated, aiming the development of a protective biomaterial that avoids cutaneous infections from the autochthonous and allochthonous microbiota. The disk diffusion of PHMB-loaded PDMS has shown the growth inhibition of Escherichia coli (ATCC 9637), Pseudomonas aeruginosa (ATCC 27953), Acinetobacter baumannii (ATCC 19606), Staphylococcus aureus (ATCC 6538), Staphylococcus epidermidis (ATCC 12228), Streptococcus pyogenes (ATCC 19615), Bacillus subtilis (ATCC 6633) and also yeast-like fungi Candida albicans, all microorganisms found on the epidermal surface. Likewise, the present study demonstrated low cytotoxicity of the PHMB-loaded PDMS on HaCaT and L929 cells at lower concentrations (0.1% w/w), indicating the possibility of using the developed material as a dressing for wounds, burns, and post-surgical procedures.


Subject(s)
Anti-Infective Agents/chemistry , Dimethylpolysiloxanes/chemistry , Guanidines/chemistry , Animals , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Candida albicans/physiology , Cell Line , Cell Survival/drug effects , Escherichia coli/drug effects , Escherichia coli/physiology , Guanidines/metabolism , Guanidines/pharmacology , Humans , Mice , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
8.
Chem Biodivers ; 18(3): e2000794, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33463005

ABSTRACT

The present study aimed to determine the chemical composition and biological activity of the essential oil obtained from Phyllogonium viride Brid. (Phyllogoniaceae, Bryophyta), whose samples were collected in southern Brazil. For the first time, the cytotoxic activity of the essential oil of P. viride in breast and colorectal tumor cells (MCF-7 and HCT-116) was evaluated, as well as the cytotoxic potential of this oil in non-tumoral cells of human immortalized keratinocytes (HaCaT) via MTT assay. The compounds majorly found in P. viride essential oil were ß-bazzanene (20.30 %), ß-caryophyllene (17.06 %), ß-chamigrene (14.02), and germacrene B (11.72 %). Treatment with P. viride essential oil in the different tested cell lines did not induce any toxicity in most of the tested concentrations. These data contribute to generating new scientific information about this understudied plant species. Furthermore, the chemical characterization of the compounds present in the essential oil of P. viride can lead to greater elucidation of its biotechnological potential.


Subject(s)
Bryophyta/chemistry , Oils, Volatile/chemistry , Cell Line , Humans , Oils, Volatile/isolation & purification
9.
Microb Pathog ; 149: 104354, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32569789

ABSTRACT

The immunomodulatory properties of Brazilian red propolis (BRP) have been already described. Also, propolis have been proved to have antibacterial activity on Corynebacterium pseudotuberculosis. An adjuvant effect of red propolis oil was able to induce a significant anti-C. pseudotuberculosis humoral immune response. Here, we demonstrate for the first time the immunostimulant property of BRP hydroalcoholic extract (BRPHE) in a recombinant vaccine against caseous lymphadenitis. Mice BALB/c were allocated in three groups inoculated with: sterile saline solution (G1); BRPHE (G2); or BRPHE combined with the C. pseudotuberculosis rCP01850 recombinant protein (G3) in two doses within a 21-days-interval. Blood samples were collected for the total IgG, IgG1 and IgG2a measurement. Mice were challenged with a virulent C. pseudotuberculosis strain, and other 6 mice were used for IFN-γ and IL-10 levels determination after splenocyte stimulation with the recombinant antigen. G3 showed higher significant levels of antibodies on the 42nd experimental day, with a high IgG2a/IgG1 proportion. G2 and G3 presented significant production of IFN-γ and IL-10, while G3 presented the higher levels of IFN-γ (p < 0.05). After challenge, G2 showed a survival rate of 20%, while 70% of mice from G3 survived the experimental challenge. In conclusion, BRPHE used alone has immunostimulant properties specially on cellular immune response, and when used in combination with the recombinant protein rCP01850 induces cellular and humoral immune responses as well as a significant survival of inoculated mice.


Subject(s)
Corynebacterium Infections , Corynebacterium pseudotuberculosis , Lymphadenitis , Propolis , Animals , Brazil , Mice , Mice, Inbred BALB C , Recombinant Proteins/genetics
10.
J Biomater Appl ; 35(3): 353-370, 2020 09.
Article in English | MEDLINE | ID: mdl-32571172

ABSTRACT

Ti6Al4V used in biomedical applications still has several surface-related problems, such as poor bone compatibility and low wear resistance. In this work, the formation of a protective layer of titanium nitride obtained by plasma treatment in hollow cathode was studied, and the best experimental conditions were verified by a statistical factorial design of experiments. The samples were characterized in terms of their physical and chemical properties, correlating the effects of time (min) and temperature (°C). An achieved ideal condition was further analysed in terms of in vitro cytotoxicity, micro-abrasion, and electrochemical properties. The carried-out assessment has shown that nitrided condition has an improvement in wettability, microhardness, along with TixNy formation and roughness increment, when compared to pristine condition.


Subject(s)
Alloys/chemistry , Coated Materials, Biocompatible/chemistry , Plasma Gases/chemistry , Titanium/chemistry , Animals , Cell Survival , Corrosion , Electrochemical Techniques , Electrodes , Humans , Mice , Surface Properties , Temperature , Time Factors , Wettability
11.
Bioorg Chem ; 90: 103079, 2019 09.
Article in English | MEDLINE | ID: mdl-31255990

ABSTRACT

Plant compounds have been identified as new drug prototypes. In this line, this work aimed to isolate the indole alkaloid affinisine from Tabernaemontana catharinensis and test its antitumor activity. The alkaloid was isolated by silica gel open column chromatography from the ethanolic extract of the stem of T. catharinensis. Afterwards, this molecule was characterized by high-resolution mass spectrometry and nuclear magnetic resonance. In the next step, the cytotoxicity of the compound was tested against human melanoma cell lines (A375, WM1366 and SK-MEL-28) and a normal skin cell line (CCD-1059Sk) using a MTT (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Cells treated with affinisine were evaluated by flow cytometry to analyze apoptosis and the induction of cell cycle arrest, to evaluate the dead mechanism. The metabolite was isolated in a 0.2% yield relative to the extract. Cytotoxic activity of the molecule was observed at 48 h, resulting in considerable growth inhibition rates in melanoma cells, especially in WM1366, which had the lowest IC50 (32.86 ± 2.54 µg/mL). The apoptosis rate was lower in A375 (56.66 and 86.71% with 57 and 65 µg/mL, respectively). Moreover, affinisine was able to significantly induce cell cycle arrest in different phases in the A375 and WM1366 cell lines. However, in SK-MEL-28 cells, cycle arrest was not observed. In summary, this compound significantly decreased the viability of tumor cells in a dose- and time-dependent manner for all evaluated lineages, reduced cell viability by the apoptosis mechanism and presented prominent activities of cell cycle arrest. In this way, the use of antineoplastic agents is among the most widely used therapeutic measures for the control and treatment of cancer. Affinisine is a promising prototype in the search for new drugs to treat cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Indole Alkaloids/isolation & purification , Indole Alkaloids/pharmacology , Melanoma/drug therapy , Plant Extracts/pharmacology , Tabernaemontana/chemistry , Apoptosis , Cell Cycle Checkpoints , Cell Survival , Humans , In Vitro Techniques , Melanoma/pathology , Tumor Cells, Cultured
12.
Mater Sci Eng C Mater Biol Appl ; 102: 264-275, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31146999

ABSTRACT

Ultra-high molecular weight polyethylene (UHMWPE) is a prevailing bearing material applied in joint arthroplasty. Despite not being a novel biomaterial, its debris as consequence of long application and surface properties usually still lead to short lifespan. Many of the drawbacks are associated with sterilization methods that degrade the surface properties of UHMWPE. This work aims at improving the sterilizing treatment and also increasing material wettability, without losing bulk properties, which are essential for an orthopedic bearing. Cold plasma in hollow cathode setting was used for the material surface functionalization. Samples were characterized through contact angle (WCA), x-ray diffraction (XRD), optical microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and profilometry. Optimal points based on immediate surface wettability, shelf time and sterilization efficacy were chosen for biocompatibility evaluation. When comparing cell viability through MTT among treated samples (OP1, OP2 and UV), a slight reduction in OP2 viability could be seen after 7 days incubation, which is also observed in Giemsa staining and SEM images. In late incubation, OP1 loses its hydrophilic character and displays higher cell adhesion than its counterparts UV and OP2. At the end, OP2 showed less cells growing over the biomaterial after 7 days exposition compared to OP1 and UV. OP1 presented a more hydrophobic surface and improved cell adhesion, differently from OP2 and UV, which maintained their wettability conditions in late incubation. Cell analysis results indicate that surface wetting influences cell morphology and consequent cell adhesion, in which more hydrophobic surfaces are shown to favor fibroblast adhesion properties.


Subject(s)
Chemical Phenomena , Fibroblasts/cytology , Plasma Gases/chemistry , Polyethylenes/chemistry , Sterilization , Analysis of Variance , Animals , Apoptosis , Cell Adhesion , Cell Line , Cell Proliferation , Cell Shape , Cell Survival , Electrodes , Fibroblasts/ultrastructure , Mice
13.
J Ethnopharmacol ; 239: 111863, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30974203

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ethnopharmacological knowledge is important for the identification of active compounds from natural products. Pain may have different aetiologies with complex mechanisms. Tabernaemontana catharinensis A. DC. is well known for indole alkaloids, being used empirically in folk medicine, with antimicrobial and anti-inflammatory as well as antiofidic actions among others. AIM OF THE STUDY: This work aims to evaluate the antinociceptive and antioxidant effect in mice of the alkaloids extract from leaves of Tabernaemontana catharinensis A. DC. (AITc). MATERIALS AND METHODS: The AITc was produced by ultrasound and acid-base extraction, and the chemical composition was evaluated by high resolution mass spectrometry. Male mice (Mus musculus), Swiss, were used for in vivo tests. The AITc was administrated at doses of 1.0, 5.0, and 10.0 mg/kg in acetic acid model, formalin, tail-immersion, hot plate, and open field tests, and compared to saline, morphine, or diazepam controls, depending on the test. The toxicological, biochemical, haemogram and antioxidant effect were evaluated in mouse organs such as liver, brain, kidneys, spleen and stomach. RESULTS: In total, 10 compounds were identified in the AITc, being from the indole alkaloids from the ibogan and corynanthean classes. The extract in doses ranging from 5.0 to 10.0 mg/kg showed an antinociceptive effect for acetic acid, inhibiting by 47.7% and 61.6%. In the same line, reductions of 47.1% (first phase) and 43.6% (second phase) were observed for the 5.0 mg/kg dose in the formalin test. However, tail-immersion and hot plate tests did not show considerable modifications in the latency period, while in the open field test there was an inhibition of only 5.1%. It was observed no differences in NO levels and total antioxidant status of the mice in any of the studie tissues. CONCLUSIONS: The results justify the use of this plant in traditional medicine. in vivo tests indicate that these compounds possess central and peripheral mechanisms of action. This is study that reports the nociceptive action of these alkaloids, also including toxicity tests, which are intended to guarantee the safety of use of extracts of this plant.


Subject(s)
Alkaloids , Analgesics , Antioxidants , Plant Extracts , Tabernaemontana , Acetic Acid , Alkaloids/chemistry , Alkaloids/therapeutic use , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Antioxidants/chemistry , Antioxidants/therapeutic use , Biphenyl Compounds/chemistry , Male , Mice , Pain/chemically induced , Pain/drug therapy , Picrates/chemistry , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Leaves , Toxicity Tests, Acute , Toxicity Tests, Subchronic
14.
Biomed Pharmacother ; 112: 108640, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30784929

ABSTRACT

Since early times, propolis has been used in folk medicine. The red propolis, collected in the northeast region of Brazil has been highlighted due to its popular use as an antimicrobial, with anti-inflammatory and healing properties, which are associated with its chemical composition. Here, we combine a bacterial membrane with red propolis to treat wounds of diabetic mice. This work aims to evaluate a biocurative from bacterial cellulose associated with red propolis in diabetic mice as wound healing model. Biocuratives from bacterial cellulose membrane and different extracts of red propolis were produced. The qualification and quantification of the presence of propolis chemical compounds in the membrane were investigated through high-resolution mass spectrometry (HRMS). Tests in vivo with biocuratives were performed on Swiss male diabetic mice induced by estroptozotocin. The animals were submitted to a surgical procedure and a single lesion was produced in the dorsal region, which was treated with the biocuratives. Macroscopic assessments were performed at 2, 7 and 14 postoperative days, and biopsies were collected on days 0, 7 and 14 for histological analysis, myeloperoxidase enzyme activity (MPO) and cytokines (TNF-α, IL-1ß, and TGF-ß). Altogether, ten compounds were identified in membranes and five were further quantified. The ethyl acetate extract showed more red propolis markers, and the most prevalent compound was Formononetin with 4423.00-2907.00 µg.g-1. Macroscopic analyses demonstrated that the two groups treated with red propolis (GMEBT and GMEAE) showed significantly greater healing capabilities compared to the control groups (GS and GMS). An increase in leukocyte recruitment was observed, confirmed by the activity of the enzyme myeloperoxidase (MPO) in GMEBT and GMEAE groups. The levels of TNF-α were significantly higher in wounds stimulated with red propolis, as well as in TGF-ß (GMEBT and GMEAE) on day 7. This was different from the IL-1ß levels that were higher in the control groups (GS and GMS). In summary, the biocuratives produced in this work were able to accelerate the wound healing process in a diabetic mouse model. In this way, the traditional knowledge of red propolis activity helped to create a biotechnological product, which can be used for diabetic wound healing purpose.


Subject(s)
Acetobacteraceae/chemistry , Cellulose/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Propolis/therapeutic use , Skin/drug effects , Wound Healing/drug effects , Animals , Cell Membrane/chemistry , Cellulose/administration & dosage , Cellulose/isolation & purification , Diabetes Mellitus, Experimental/complications , Male , Propolis/administration & dosage , Skin/injuries , Treatment Outcome
15.
Mater Sci Eng C Mater Biol Appl ; 96: 539-551, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30606564

ABSTRACT

Biomaterials can be applied in tissue engineering as scaffolds that resemble the extracellular matrix functioning as a temporary structure for cell proliferation and reconstruction of new organs and tissues. To evaluate the potential use of scaffolds as a biomaterial, this work proposes the development and characterization of polyurethane (PU), poly(D,L-lactic acid) (PDLLA) and polyurethane/poly(d,l-lactic acid) (PU/PDLLA) scaffolds produced by gas foaming technique. The neat polymers and the blends were characterized, in film form, by gel permeation chromatography (GPC), thermogravimetry (TG), differential scanning calorimetry (DSC) and field emission gun scanning electron microscopy (FEG-SEM). After supercritical fluid technology, in scaffolds form, the samples were characterized by FEG-SEM, pore size, density, cytotoxicity and cell adhesion. For film characterization the PU/PDLLA sample presented intermediate characteristics compared to the neat polymers, exhibiting the behavior of both polymers in the sample without phase separation in the FEG-SEM micrograph and bimodal molar weight distribution by GPC. The scaffolds showed interconnectivity and pore size of 141 µm ±â€¯108 µm for PUsc and 52 µm ±â€¯32 µm for PDLLAsc. The PU/PDLLAsc exhibited a bimodal structure in which the PU in the mixture revealed pores of 75 µm ±â€¯57 µm, while for PDLLA, the pore size was 19 µm ±â€¯12 µm. In vitro tests confirmed the adhesion of L929 cells to PUsc, PDLLAsc and PU/PDLLAsc, showing no cytotoxic effect. Finally, it can be concluded that it is possible to produce PU, PDLLA and PU/PDLLA scaffolds by supercritical fluid, which may be applied as biomaterials.


Subject(s)
Materials Testing , Polyesters , Polyurethanes , Tissue Scaffolds/chemistry , Animals , Biomedical Research , Cell Line , Mice , Polyesters/chemistry , Polyesters/pharmacology , Polyurethanes/chemistry , Polyurethanes/pharmacology
16.
Bioorg Chem ; 85: 66-74, 2019 04.
Article in English | MEDLINE | ID: mdl-30599414

ABSTRACT

Active plant metabolites have been used as prototype drugs. In this context, Tabernaemontana catharinensis (Apocynaceae) has been highlighted because of the presence of active indole alkaloids. Thus, this study aims the bio-guided search of T. catharinensis cytotoxic alkaloids. The chemical composition was identified by high-resolution mass spectrometry, and fractionation was performed by open column and preparative thin-layer chromatography, from plant stems. The enriched fractions were tested in vitro in tumour cells A375 (melanoma cell line) and A549 (adenocarcinomic human alveolar basal epithelial cells), and non-tumour Vero cells (African green monkey kidney epithelial cells). The alkaloids identified as active were submitted to in silico toxicity prediction by ADME-Tox and OSIRIS programs and, also, to molecular docking, using topoisomerase I (PDB ID: 1SC7) by iGEMDOCK. As a result, six sub-fractions were obtained, which were identified as containing 16-epi-affinine, 12-methoxy-n-methyl-voachalotine, affinisine, voachalotine, coronaridine hydroxyindoline and ibogamine, respectively. The affinisine-containing sub-fraction showed selective toxicity against A375, with an IC50 of 11.73 µg mL-1, and no cytotoxicity against normal cells (Vero). From the in silico toxicity test results, all indole alkaloid compounds had a low toxicity risk. The molecular docking data provided structural models and binding affinities of the plant's indole alkaloids and topoisomerase I. In summary, this bio-guided search revealed that the indole alkaloids from T. catharinensis display selective cytotoxicity in A375 tumour cells and toxicity in silico. Particularly, affinisine might be a chemotherapeutic for A375 melanoma cells.


Subject(s)
Antineoplastic Agents/pharmacology , Indole Alkaloids/pharmacology , Tabernaemontana/chemistry , Animals , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/toxicity , Cell Line, Tumor , Chlorocebus aethiops , DNA Topoisomerases, Type I/metabolism , Density Functional Theory , Humans , Indole Alkaloids/isolation & purification , Indole Alkaloids/toxicity , Models, Chemical , Molecular Docking Simulation , Plant Stems/chemistry , Vero Cells
17.
Anticancer Res ; 38(11): 6231-6236, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30396942

ABSTRACT

BACKGROUND/AIM: Colorectal cancer is a common type of cancer with reported resistance to treatment, in most cases due to loss of function of apoptotic and cell-cycle proteins. Piperlongumine (PPLGM) is a natural alkaloid isolated from Piper species, with promising anti-cancer properties. This study investigated whether PPLGM is able to induce cell death in colorectal carcinoma HCT 116 cells expressing wild-type or deficient in Bax, p21 or p53. MATERIALS AND METHODS: PPLGM was extracted from roots of Piper tuberculatum. Cell viability was determined by reduction of 3-(4,5-dimethilthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assay. Cell death was evaluated by acridine orange/ethidium bromide staining and flow cytometry. Plasmid cleavage activity and circular dichroism DNA interaction were also analyzed. RESULTS: PPLGM induced selective cell death in all cell lines (IC50 range from 10.7 to 13.9 µM) with an increase in the number of late apoptotic cells and different profiles in cell-cycle distribution. Plasmid DNA analysis showed that PPLGM does not interact directly with DNA. CONCLUSION: This paper suggests that PPLGM may be a promising candidate in colorectal cancer therapy.


Subject(s)
Colorectal Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Dioxolanes/pharmacology , Tumor Suppressor Protein p53/genetics , bcl-2-Associated X Protein/genetics , Apoptosis , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/drug therapy , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans
18.
Microbiol Res ; 214: 74-82, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30031483

ABSTRACT

The indiscriminate use of antibiotics is causing an increase in bacterial resistance, complicating therapeutic planning. In this context, natural products have emerged as major providers of bioactive compounds. This work performs a bioguided study of Brazilian red propolis to identify compounds with antibacterial potential and to evaluate their cytotoxicity against non-tumour cells. Using bioguided fractionation performed with the hydroalcoholic extract of red propolis from Alagoas, it was possible to obtain subfractions with remarkable bacteriostatic activity compared with the precursor fractions. The SC2 subfraction was highlighted and showed the best results with minimal inhibitory concentrations (MICs) of 56.75, 28.37, 454.00, and 227.00 µg mL-1 against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, respectively. However, this study also revealed a cytotoxic effect against the non-tumour Vero cell line. Furthermore, through chemical analyses using high resolution mass spectrometry, high performance liquid chromatography with UV detection, and gas chromatography coupled to mass spectrometry, we verified the presence of important marker compounds in the fractions and extracts, including formononetin (m/z 267.0663), biochanin A (m/z 283.0601), and liquiritigenin (m/z 255.0655). The results obtained in this study suggest an important antibacterial potential of red propolis subfractions. In this context, the bioguided fractionation has been a useful process, due to its ability to isolate and concentrate active compounds in a logical and rational way.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Biological Products/isolation & purification , Biological Products/pharmacology , Propolis/chemistry , Animals , Anti-Bacterial Agents/toxicity , Bacteria/growth & development , Biological Products/toxicity , Brazil , Cell Survival/drug effects , Chemical Fractionation , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Epithelial Cells/drug effects , Epithelial Cells/physiology , Mass Spectrometry , Microbial Sensitivity Tests , Vero Cells
19.
Int J Med Mushrooms ; 20(1): 31-46, 2018.
Article in English | MEDLINE | ID: mdl-29604911

ABSTRACT

Cumulative evidence from research studies has shown that the shiitake culinary-medicinal mushroom, Lentinus edodes, is an excellent source of natural antitumor agents and is capable of inhibiting cancer cell growth. However, the cell signaling pathway that leads tumor cells to apoptosis is not well understood because many chemical compounds may be acting. This study investigated the chemopreventive effects of an L. edodes aqueous extract on human HEp-2 epithelial larynx carcinoma cells and normal human MRC-5 lung fibroblasts by identifying proliferative and apoptotic pathways. The chemical characterization of the dry powder was assessed by high-performance liquid chromatography. Antiproliferative and proapoptotic effects induced by the extract were evaluated by assessing proliferative markers, cell sorting through flow cytometry, and expression levels of apoptotic proteins with Western blotting. The results suggest that inhibition of cell proliferation was more prominent in HEp-2 than in MRC-5 cells. Cell death analysis showed the appearance of cell populations in the sub-G1 phase, with late apoptotic signal increased in a dose-dependent manner. In addition, the aqueous extract induced depolarization of mitochondria, activating the generation of intracellular reactive oxygen species in HEp-2 cells. These observations suggest that L. edodes extract may exert a chemopreventive effect, regulating mitotic induction of apoptogenic signals. These findings highlight the mushroom's pharmacological potential in cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Shiitake Mushrooms/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Gallic Acid/analysis , Humans , Inhibitory Concentration 50 , Larynx/cytology , Larynx/pathology , Lentinan/pharmacology , Membrane Potential, Mitochondrial/physiology , Mitochondria/drug effects , Mitosis/drug effects , Phenols/analysis , Phenols/chemistry , Reactive Oxygen Species/metabolism , Water/chemistry
20.
Food Chem Toxicol ; 112: 383-392, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29337231

ABSTRACT

Pleurotus sajor-caju (PSC) is an edible mushroom used in food supplements, presenting antitumor properties through induction of cell death pathways. The PSC potential against colorectal cancer was analyzed by exposing HCT116wt cells to different PSC extracts. The PSC n-hexane extract (PSC-hex) showed the highest cytotoxicity effect (IC50 value 0.05 mg/mL). The observed cytotoxicity was then associated to apoptosis-promoting and cell cycle-arrest pathways. PSC-hex was able to induce apoptosis related to breakdown of mitochondrial membrane potential and ROS generation. The absence of cytotoxicity in HTC116-p53 and HTC116-Bax cells, alongside with an increase in p53, Bax and Caspase-3 expression, and decrease in Bcl-2 expression, supports that the pro-apoptotic effect is probably induced through a p53 associated pathway. PSC-hex induced cell cycle arrest at G2/M in HCT116wt without cytotoxicity in HTC116-p21 cells. These findings suggest that a p21/p53 cell cycle regulation pathway is probably disrupted by compounds present on PSC-hex. Identification of the major components was then performed with ergosta-5,7,22-trien-3ß-ol representing 30.6% of total weight. In silico docking studies of ergosta-5,7,22-trien-3ß against Bcl-2 were performed and results show a credible interaction with the Bcl-2 hydrophobic cleft. The results show that PSC-hex can be used as supplementary food for adjuvant therapy in colorectal carcinoma.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/therapy , Dietary Supplements , Pleurotus/chemistry , Antineoplastic Agents/isolation & purification , Caspase 3/metabolism , Cell Division/drug effects , Cell Line , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Ergosterol/analogs & derivatives , Ergosterol/isolation & purification , Ergosterol/pharmacology , G2 Phase/drug effects , HCT116 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Membrane Potential, Mitochondrial/drug effects , Molecular Docking Simulation , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...