Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters











Publication year range
1.
Nanomaterials (Basel) ; 14(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39269041

ABSTRACT

The blood-brain barrier (BBB) plays a vital role in safeguarding the central nervous system by selectively controlling the movement of substances between the bloodstream and the brain, presenting a substantial obstacle for the administration of therapeutic agents to the brain. Recent breakthroughs in nanoparticle-based delivery systems, particularly metal-organic frameworks (MOFs), provide promising solutions for addressing the BBB. MOFs have become valuable tools in delivering medications to the brain with their ability to efficiently load drugs, release them over time, and modify their surface properties. This review focuses on the recent advancements in molecular-based approaches for treating brain disorders, such as glioblastoma multiforme, stroke, Parkinson's disease, and Alzheimer's disease. This paper highlights the significant impact of MOFs in overcoming the shortcomings of conventional brain drug delivery techniques and provides valuable insights for future research in the field of neurotherapeutics.

2.
Bioresour Technol ; 408: 131204, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39102965

ABSTRACT

The synthetic superabsorbent polymers (SAPs) market is experiencing significant growth, with applications spanning agriculture, healthcare, and civil engineering, projected to increase from $9.0 billion USD in 2019 to $12.9 billion USD by 2024. Despite this positive trend, challenges such as fluctuating raw material costs and lower biodegradability of fossil fuel-based SAPs could impede further expansion. In contrast, cellulose and its derivatives present a sustainable alternative due to their renewable, biodegradable, and abundant characteristics. Lignocellulosic biomass (LCB), rich in cellulose and lignin, shows promise as a source for eco-friendly superabsorbent polymer (SAP) production. This review discusses the applications, challenges, and future prospects of SAPs derived from lignocellulosic resources, focusing on the cellulose extraction process through fractionation and various modification and crosslinking techniques. The review underscores the potential of cellulose-based SAPs to meet environmental and market needs, offering a viable path forward in the quest for more sustainable materials.


Subject(s)
Biomass , Cellulose , Lignin , Polymers , Lignin/chemistry , Cellulose/chemistry , Polymers/chemistry
3.
J Pharm Sci ; 113(6): 1616-1623, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38311170

ABSTRACT

Vanillin crystals undergo needle-like morphology that results in poor flowability, crystal breakage, and low packing density. The spherical crystallization technology can produce particles with improved flowability and stability. A reverse antisolvent crystallization based on liquid-liquid phase separation is proposed in this work to produce vanillin spherical agglomerates. Hansen Solubility Parameters are applied to explain the liquid-liquid phase separation (LLPS) phenomenon. The Pixact Crystallization Monitoring system is applied to in-situ monitor the whole process. A six-step spherical crystallization mechanism is revealed based on the recorded photos, including the generation of oil droplets, nucleation inside oil droplets, the coalescence and split of oil droplets, crystal growth and agglomeration, breakage of oil droplets, and attrition of agglomerates. Different working conditions are tested to explore the best operation parameters and a frequency-conversion stirring strategy is proposed to improve the production of spherical crystals.


Subject(s)
Benzaldehydes , Crystallization , Solubility , Solvents , Crystallization/methods , Solvents/chemistry , Benzaldehydes/chemistry , Particle Size , Phase Transition , Phase Separation
4.
IEEE Trans Nanobioscience ; 23(1): 63-70, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37428669

ABSTRACT

The current study developed a drug delivery system through the green chemistry-based synthesis of a biologically friendly metal-organic framework (bio-MOF) called Asp-Cu, which included copper ions and the environmentally friendly molecule L(+)-aspartic acid (Asp). For the first time, diclofenac sodium (DS) was loaded onto the synthesized bio-MOF simultaneously. The system's efficiency was then improved by encapsulating it with sodium alginate (SA). FT-IR, SEM, BET, TGA, and XRD analyses confirmed that DS@Cu-ASP was successfully synthesized. DS@Asp-Cu was found to release the total load within 2 h when used with simulated stomach media. This challenge was overcome by coating DS@Cu-ASP with SA (SA@DS@Cu-ASP). SA@DS@Cu-ASP displayed limited drug release at pH 1.2, and a higher percentage of the drug was released at pH 6.8 and 7.4 due to the pH-responsive nature of SA. In vitro cytotoxicity screening showed that SA@DS@Cu-ASP could be an appropriate biocompatible carrier with >90% cell viability. The on-command drug carrier was observed to be more applicable biocompatible with lower toxicity, as well as adequate loading properties and responsiveness, indicating its applicability as a feasible drug carrier with controlled release.


Subject(s)
Diclofenac , Metal-Organic Frameworks , Diclofenac/pharmacology , Diclofenac/chemistry , Metal-Organic Frameworks/chemistry , Copper/chemistry , Spectroscopy, Fourier Transform Infrared , Drug Carriers/chemistry , Alginates/chemistry , Hydrogen-Ion Concentration
5.
Int J Biol Macromol ; 259(Pt 1): 128875, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154719

ABSTRACT

The utilization of biocompatible drug delivery systems with extended drug release capabilities is highly advantageous in cancer therapy, as they can mitigate adverse effects. To establish such a biocompatible system with prolonged drug release behavior, researchers developed an innovative drug carrier. In this study, a sustainable approach was employed to synthesize a new zinc-based metal-organic framework (Zn-MOF) through the reaction between synthesized Schiff base ligands and zinc ions. Comprehensive analyses, including FT-IR, XRD, SEM, BET surface area, and TGA techniques, were employed to thoroughly characterize the frameworks. Following comprehensive characterization, curcumin (CUR) was loaded onto the Zn-MOF, resulting in CUR entrapment efficiency and loading capacity of 79.23 % and 26.11 %, respectively. In vitro evaluations of CUR release from CUR@MOF exhibited controlled release patterns, releasing 78.9 % and 50.0 % of CUR at pH 5.0 and pH 7.4, respectively. To mitigate initial burst release, a coating of the biopolymer sodium alginate (SA) was applied to CUR@Zn-MOF. In vitro CUR release tests indicated that SA/CUR@Zn-MOF outperformed pristine CUR@Zn-MOF. The release of CUR conformed to the Korsmeyer-Peppas model, displaying non-Fickian diffusion. Furthermore, an in vitro cytotoxicity study clearly demonstrated the potent anti-tumor activity of the synthesized CUR@Zn-MOF attributed to its controlled release of CUR. This led to the induction of apoptotic effects and cell death across HeLa, HEK293, and SH-SY5Y cell lines. These findings strongly suggest that the developed pH-sensitive carriers hold remarkable potential as targeted vehicles for drug delivery in cancer therapy.


Subject(s)
Curcumin , Metal-Organic Frameworks , Neuroblastoma , Humans , Curcumin/chemistry , Metal-Organic Frameworks/chemistry , Delayed-Action Preparations , Alginates , HEK293 Cells , Spectroscopy, Fourier Transform Infrared , Neuroblastoma/drug therapy , Drug Delivery Systems , Drug Carriers/chemistry , Zinc , Drug Liberation
6.
J Mater Chem B ; 11(48): 11426-11459, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38047399

ABSTRACT

Biological metal-organic frameworks (bio-MOFs) constitute a growing subclass of MOFs composed of metals and bio-ligands derived from biology, such as nucleobases, peptides, saccharides, and amino acids. Bio-ligands are more abundant than other traditional organic ligands, providing multiple coordination sites for MOFs. However, bio-MOFs are typically prepared using hazardous or harmful solvents or reagents, as well as laborious processes that do not conform to environmentally friendly standards. To improve biocompatibility and biosafety, eco-friendly synthesis and functionalization techniques should be employed with mild conditions and safer materials, aiming to reduce or avoid the use of toxic and hazardous chemical agents. Recently, bio-MOF applications have gained importance in some research areas, including imaging, tumor therapy, and targeted drug delivery, owing to their flexibility, low steric hindrances, low toxicity, remarkable biocompatibility, surface property refining, and degradability. This has led to an exponential increase in research on these materials. This paper provides a comprehensive review of updated strategies for the synthesis of environmentally friendly bio-MOFs, as well as an examination of the current progress and accomplishments in green-synthesized bio-MOFs for drug delivery aims and tumor treatments. In conclusion, we consider the challenges of applying bio-MOFs for biomedical applications and clarify the possible research orientation that can lead to highly efficient therapeutic outcomes.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Humans , Metal-Organic Frameworks/chemistry , Drug Delivery Systems , Metals/chemistry , Neoplasms/drug therapy , Surface Properties
7.
Molecules ; 28(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37375220

ABSTRACT

Electrochemical reduction of nitrate has broad application prospects. However, in traditional electrochemical reduction of nitrate, the low value of oxygen produced by the anodic oxygen evolution reaction and the high overpotential limit its application. Seeking a more valuable and faster anodic reaction to form a cathode-anode integrated system with nitrate reaction can effectively accelerate the reaction rate of the cathode and anode, and improve the utilization of electrical energy. Sulfite, as a pollutant after wet desulfurization, has faster reaction kinetics in its oxidation reaction compared to the oxygen evolution reaction. Therefore, this study proposes an integrated cathodic nitrate reduction and anodic sulfite oxidation system. The effect of operating parameters (cathode potential, initial NO3--N concentration, and initial SO32--S concentration) on the integrated system was studied. Under the optimal operating parameters, the nitrate reduction rate in the integrated system reached 93.26% within 1 h, and the sulfite oxidation rate reached 94.64%. Compared with the nitrate reduction rate (91.26%) and sulfite oxidation rate (53.33%) in the separate system, the integrated system had a significant synergistic effect. This work provides a reference for solving nitrate and sulfite pollution, and promotes the application and development of electrochemical cathode-anode integrated technology.

8.
Waste Manag ; 165: 189-198, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37149393

ABSTRACT

A large amount of hazardous spent lithium-ion batteries (LIBs) is produced every year. Recovery of valuable metals from spent LIBs is significant to achieve environmental protection and alleviate resource shortages. In this study, a green and facile process for recovery of valuable metals from spent LIBs by waste copperas was proposed. The effects of heat treatment parameters on recovery efficiency of valuable metals and the redox mechanism were studied systematically through phase transformation behavior and valence transition. At low temperature (≤460 °C), copperas reacted with lithium on the outer layer of LIBs preferentially, but the reduction of transition metals was limited. As the temperature rose to 460-700 °C, the extraction efficiency of valuable metals was greatly enhanced due to the generation of SO2, and the gas-solid reaction proceeded much fast than the solid-solid reaction. In the final stage (≥700 °C), the main reactions were the thermal decomposition of soluble sulfates and the combination of decomposed oxides with Fe2O3 to form insoluble spinel. Under the optimum roasting conditions, i.e., at a copperas/LIBs mass ratio of 4.5, and a roasting temperature of 650 °C and roasting time of 120 min, the leaching efficiencies of Li, Ni, Co and Mn were 99.94%, 99.2%, 99.5% and 99.65%, respectively. The results showed that valuable metals can be selectively and efficiently extracted from the complex cathode materials by water leaching. This study used waste copperas as an aid to recover metals and provided an alternative technical route for green recycling of spent LIBs.


Subject(s)
Lithium , Metals , Electric Power Supplies , Recycling , Temperature
9.
J Pharm Sci ; 112(7): 1929-1938, 2023 07.
Article in English | MEDLINE | ID: mdl-36893962

ABSTRACT

Zinc phenylacetate (Zn-PA), a substitute for sodium phenylacetate as an ammonia-scavenging drug is hydrophobic, which poses problems for drug dissolution and solubility. We were able to co-crystallize the zinc phenylacetate with isonicotinamide (INAM) and produce a novel crystalline compound (Zn-PA-INAM). The single crystal of this new crystal was obtained, and its structure is reported here for the first time. Zn-PA-INAM was characterized computationally by ab initio, Hirshfeld calculations, CLP-PIXEL lattice energy calculation, and BFDH morphology analysis, and experimentally by PXRD, Sc-XRD, FTIR, DSC, and TGA analyses. Structural and vibrational analyses showed a major modification in intermolecular interaction of Zn-PA-INAM compared to Zn-PA. The dispersion-based pi-stacking in Zn-PA is replaced by coulomb-polarization effect of hydrogen bonds. As a result, Zn-PA-INAM is hydrophilic, improving the wettability and powder dissolution of the target compound in an aqueous solution. Morphology analysis revealed, unlike Zn-PA, Zn-PA-INAM has polar groups exposed on its prominent crystalline faces, reducing the hydrophobicity of the crystal. The shift in average water droplet contact angle from 128.1° (Zn-PA) to 27.1° (Zn-PA-INAM) is strong evidence of a marked decrease in hydrophobicity of the target compound. Finally, HPLC was used to obtain the dissolution profile and solubility of Zn-PA-INAM compared to Zn-PA.


Subject(s)
Phenylacetates , Zinc , Crystallization , Hydrophobic and Hydrophilic Interactions , Water/chemistry
10.
Sci Total Environ ; 858(Pt 1): 159787, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36309255

ABSTRACT

The global water crisis reflects the necessity of exploring the best approaches for the water supply. Therefore, for the first time, the current study compares nitrogen removal systems (NRSs) from life cycle assessment (LCA), economic, kinetic, thermodynamic, and synergistic perspectives. The assessed systems were sequential batch reactor (SBR), oxic/anoxic (OA), and oxic/anaerobic/oxic (OAO) bioreactors. Among all, the SBR configuration showed the best efficiency (98.74 %) for nitrogen removal. The environmental impacts notably presented by marine + freshwater ecotoxicity (53.76 %), and climate change categories (16.39 %), significantly because of metal emissions. Non-renewable sources supplied 95 % of total energy demand. The operation of NRSs showed the most impact on human health (63.67 %) through CH4 and CO2 emissions. The total costs significantly belonged to the construction (<86.37 %) > amortization> operation. The influent COD illustrated the most role in environmental burdens (16.44 %) based on the sensitivity analysis. The removal reaction was endothermic, physical, non-spontaneous, and followed a pseudo-second-order kinetic model (R2 > 0.98). The chemical exergy provided the major portion of the total calculated exergy (83 %). The exergetic efficiency of the system was 69 %, which was predominantly supplied by biogas (∼50.75 %). Accordingly, this study can present a stepwise guideline for further related investigations.


Subject(s)
Nitrogen , Waste Disposal, Fluid , Humans , Animals , Denitrification , Conservation of Energy Resources , Bioreactors , Life Cycle Stages
11.
Drug Deliv Transl Res ; 13(2): 675-688, 2023 02.
Article in English | MEDLINE | ID: mdl-36056290

ABSTRACT

Magnetic drug targeting (MDT) is one of the most modern techniques in cancer therapy for its ability to reduce the side effects of chemotherapy experienced by systemic drug administration. In this study, a comprehensive mathematical model has been developed to predict the drug particle trajectories of anticancer dasatinib magnetic nanomicelles (DAS-MNM) released in an internal thoracic artery (ITA) blood flow for breast cancer therapy using an external magnetic field. Several factors are investigated in regard to the efficiency of MDT through the ITA, including magnetic field strength (MFS), relative magnetic permeability, magnet size, drug particle size, and initial position of drug particle. The drug particle trajectory results confirmed the successful MDT using an external magnetic field with a capture efficiency of more than 90%. This was achieved by employing a wide range of particle sizes of DAS-MNM close to the external magnetic field source at the arterial wall than in other positions. Moreover, the results showed that the number of trapped particles increased with increasing both MFS and drug particle diameter within the target tissue, while the drug particle permeability did not have a considerable effect on the particle retention. In addition, for achieving a successful drug/cargo delivery through the arteries, the magnetic field, the particle size, and the initial release locations should be adjusted simultaneously. The present work offers insights into the critical factors in MDT with a significant impact on breast cancer therapy, tissue engineering, and regenerative medicine. Magnetic drug targeting model of anticancer dasatinib magnetic nanomicelles (DAS-MNM) released in an internal thoracic artery blood flow for breast cancer therapy.


Subject(s)
Breast Neoplasms , Mammary Arteries , Humans , Female , Breast Neoplasms/drug therapy , Dasatinib , Drug Delivery Systems/methods , Magnetic Fields , Drug Carriers
12.
ACS Omega ; 7(23): 19828-19841, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35722018

ABSTRACT

Three chiral nanorods of C14-l-Thea, C14-l-Phe, and C14-d-Phe were first synthesized and utilized as heterogeneous nucleants to enhance the resolution of racemic Asp via direct crystallization. Through the statistical analysis from 320 batches of nucleation experiments, we found that the apparent appearance diversity of two enantiomeric crystals of Asp existed in 80 homogeneous experiments without chiral nanorods. However, in 240 heterogeneous experiments with 4.0 wt % chiral nanorods of solute mass added, the appearance of those nuclei with the same chirality as the nanorods was apparently promoted, and that with the opposite chirality was totally inhibited. Under a supersaturation level of 1.08, the maximum ee of the initial nuclei was as high as 23.51%. When the cooling rate was 0.025 K/min, the ee of the product was up to 76.85% with a yield of 14.41%. Furthermore, the simulation results from quantum mechanics (QM) and molecular dynamics (MD) revealed that the higher chiral recognition ability of C14-l-Thea compared to C14-l-Phe that originated from the interaction difference between C14-l-Thea and Asp enantiomers was larger than that between C14-l-Phe and Asp enantiomers. Moreover, the constructed nanorods exhibited good stability and recyclability.

13.
J Pharm Sci ; 111(8): 2378-2388, 2022 08.
Article in English | MEDLINE | ID: mdl-35405123

ABSTRACT

Magnetic nanocarriers have been extensively used as a potential drug release system for breast cancer therapy. This work investigates drug release kinetics and transport mechanisms of dasatinib (DAS) anticancer drugs encapsulated in nanomagnetic self-assembled micelles. The drug release kinetics of DAS from the nanomagnetic micelles (NMM) was predicted by fitting the drug release experimental data to four different empirical models at pH values 7.4 and 5. Moreover, a simple mathematical model that can predict the drug release from bulk eroding polymer matrices has been developed using the COMSOL Multiphysics® program. The diffusional egress of the DAS release through the NMM was carried out by evaluating the diffusion coefficients inside NMM using Fick's second law and diffusion coefficients in the solution utilizing the Stokes-Einstein equation. The results revealed that NMM exhibited a superior sustained drug release rate in acidic conditions compared to the neutral state. The Peppas-Sahlin and COMSOL models gave the best fitting for the experimental drug release data and eroding matrices obtained from free DAS, DAS-micelles, and DAS-magnetic micelles at both pH values with correlation coefficients reached to 0.99. The transport mechanisms results showed a Fickian diffusion mechanism controlled with the highest diffusion coefficients of NMM in acidic conditions, while a significant relaxation contribution was observed at the neutral state.


Subject(s)
Drug Carriers , Micelles , Drug Liberation , Hydrogen-Ion Concentration , Kinetics , Magnetic Phenomena
15.
J Colloid Interface Sci ; 610: 463-473, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34815084

ABSTRACT

Domestic waste and municipal sludge are two major solid hazardous substances generated from human daily life. Co-incineration technology is regarded as an effective method for the treatment of them. However, the emitted NOx-containing exhaust with high content of phosphorus should purified strictly. CeO2-TiO2 is a promising catalyst for removal of NOx by NH3-SCR technology, but the effect of phosphorous in the exhaust is ambiguous. Therefore, the effect of phosphorus on NH3-SCR performance and physicochemical properties of CeO2-TiO2 catalyst was investigated in our present work. It was found that phosphorus decreased the NH3-SCR activity below 300 °C. Interestingly, it suppressed the formation of NOx and N2O caused by NH3 over-oxidation above 300 °C. The reason might be that phosphorus induced Ti4+ to migrate from CeO2-TiO2 solid solution and form crystalline TiO2, which led to the destruction of Ti-O-Ce structure in the catalyst. So, the transfer of electrons between Ti and Ce ions, the relative contents of Ce3+, and surface adsorbed oxygen, as well as the redox performance were limited, which further inhibited the over-oxidation of NH3. In addition, phosphorus weakened the NH3 adsorption on Lewis acid sites and the adsorption performance of NO + O2, while increased the Brønsted acid sites. Finally, the reaction mechanism over CeO2-TiO2 catalyst did not change after introducing phosphorus, L-H and E-R mechanisms co-existed on the surface of the catalysts.


Subject(s)
Cerium , Phosphorus , Ammonia , Catalysis , Humans , Incineration , Oxidation-Reduction , Sewage , Titanium
16.
Int J Pharm ; 608: 121063, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34481007

ABSTRACT

Pharmaceutical cocrystals and salts are extensively researched in recent years due to their ability to tune the physicochemical properties of active pharmaceutical ingredients (APIs). A model API, olanzapine, an atypical antipsychotic drug classified as Biopharmaceutical Classification System class II, is used in this study. Cocrystals and salts of olanzapine are discovered using solvent drop grinding and ball milling. Appropriate coformers were selected based on a combination of hydrogen-bond propensity (HBP) and hydrogen-bond coordination (HBC) calculations. Eight new multicomponent phases of olanzapine, including one cocrystal hydrate with phenol; four anhydrous salts with salicylic acid, terephthalic acid, anthranilic acid, 3-hydroxybenzoic acid, and 2-aminoterephthalic acid; one salt dihydrate with terephthalic acid; and one salt solvate with 3-hydroxybenzoic acid and acetonitrile, have been discovered and characterized by PXRD and DSC. One reported cocrystal (olanzapine-resorcinol) has also been considered for the dissolution test. All these newly formed solid phases followed the "ΔpKa rule of 3". The crystal structures of cocrystal/salts were determined by single-crystal X-ray (sc-XRD) diffraction. With the collected single-crystal data, the crystal packings were found to be primarily stabilized via strong hydrogen bonds between carboxyl, phenolic hydroxyl of co-formers/salt-formers with the piperazine and diazepine nitrogen of olanzapine, which confirmed the predicted result from the HBP and HBC calculations. HPLC coupled with UV-vis detector was used in the solubility and dissolution test instead of UV-vis spectroscopy, to avoid the peak overlap between olanzapine and co-formers/salt-formers. A threefold increase in the solubility was observed in olanzapinium 3-hydroxybenzoate and olanzapinium anthranilate, and an almost fivefold increase in solubility of olanzapinium 2-aminoterephthalate.


Subject(s)
Salts , Crystallization , Hydrogen Bonding , Olanzapine , Solubility
17.
Ultrason Sonochem ; 77: 105675, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34298309

ABSTRACT

In this paper, the ultrasound-assisted solvent-mediated polymorphic transformation of theophylline was explored in detail. The induction time and reconstruction time were significantly decreased by ultrasound, thereby decreasing the total transformation time and promoting the transformation process. The ultrasound-promoted efficiency of nucleation was different in three alcoholic solvents, which was difficult to explain by traditional kinetic effects. To resolve the above confusion, binding energies calculated by Density Functional Theory were applied to explore the relationship between the ultrasound-promoted efficiency of nucleation and solute-solvent interactions. Then, a possible molecular self-assembly nucleation pathway affected by ultrasound was proposed: the ultrasound could change and magnify the crucial effect of the specific sites of solute-solvent interactions in the nucleation process. Finally, the transformation kinetics with different effective ultrasonic energies was quantitatively analyzed by Avrami-Erofeev model, indicating that the dissolution element in the rate-limiting step was gradually eliminated by higher ultrasonic energy. Fortunately, the elusive crystal form V could be easily obtained by the ultrasound-assisted polymorph transformation. This proved to be a robust method to produce high purity form V of theophylline. The outcome of this study demonstrated that the proper ultrasonic irradiation had the potential to produce specific polymorphs selectively.


Subject(s)
Theophylline/chemistry , Ultrasonic Waves , Crystallization , Kinetics , Models, Molecular , Molecular Conformation , Solubility , Solvents/chemistry
18.
Ultrason Sonochem ; 76: 105634, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34218067

ABSTRACT

The ultrasound-assisted crystallization process has promising potentials for improving process efficiency and modifying crystalline product properties. In this work, the crystallization process of fotagliptin benzoate methanol solvate (FBMS) was investigated to improve powder properties and downstream desolvation/drying performance. The direct cooling/antisolvent crystallization process was conducted and then optimized with the assistance of ultrasonic irradiation and seeding strategy. Direct cooling/antisolvent crystallization and seeding crystallization processes resulted in needle-like crystals which are undesirable for downstream processing. In contrast, the ultrasound-assisted crystallization process produced rod-like crystals and reduced the crystal size to facilitate the desolvation of FBMS. The metastable zone width (MSZW), induction time, crystal size, morphology, and process yield were studied comprehensively. The results showed that both the seeding and ultrasound-assisted crystallization process (without seeds) can improve the process yield and the ultrasound could effectively reduce the crystal size, narrow the MSZW, and shorten the induction time. Through comparing the drying dynamics of the FBMS, the small rod-shaped crystals with a mean size of 9.6 µm produced by ultrasonic irradiation can be completely desolvated within 20 h, while the desolvation time of long needle crystals with an average size of about 157 µm obtained by direct cooling/antisolvent crystallization and seeding crystallization processes is more than 80 h. Thus the crystal size and morphology were found to be the key factors affecting the desolvation kinetics and the smaller size produced by using ultrasound can benefit the intensification of the drying process. Overall, the ultrasound-assisted crystallization showed a full improvement including crystal properties and process efficiency during the preparation of fotagliptin benzoate desolvated crystals.

19.
Water Sci Technol ; 83(6): 1369-1383, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33767043

ABSTRACT

In the present work, Zeolite A was modified by using hexadecyltrimethylammonium bromide (HDTMABr) for adsorption of the Congo red (CR) dye from synthetic aqueous solutions. The Modified Zeolite A (MZA) was characterized by XRD, SEM, and FTIR. The influence of solution pH (in the 4-12 range), ionic strength (0.1-1 M), contact time (180 min), initial CR concentration (20-60 mg/L), temperature (24-36 °C), and an adsorbent dose (1-3 g m/L) on the % dye removal and adsorbent capacity were studied. A combined effect of the initial CR concentration and temperature on the CR removal % by MZA was also studied by applying response surface methodology (RSM). Experimental values were in a good agreement with those predicated by a second-order quartic model. A maximum of 99.24% dye removal and adsorbent capacity of 21.11 mg/g was achieved under the following conditions: pH = 7, initial CR concentration = 60 mg/L, temperature = 24 °C, ionic strength = 0.1 M, adsorbent dose = 3 g/L and 90 min contact time. The equilibrium data were subjected to the Langmuir, Freundlich and Temkin isotherms, with the latter providing the best fit while kinetic adsorption studies were conducted by applying three models. The results indicated that the removal process was best described by the pseudo-second-order model. The present study demonstrates that modified MZA can be utilized for the highly efficient CR dye removal.


Subject(s)
Congo Red , Zeolites , Adsorption , Congo Red/analysis , Hydrogen-Ion Concentration , Kinetics , Wastewater
20.
Eur J Pharm Sci ; 144: 105224, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31954183

ABSTRACT

Nanofibers provide multiple merits for the delivery of many therapeutic agents with versatile biomedical applications. With the fast recent advancement in nanotechnology, nanofibers could be easily fabricated with tunable morphologies and release profiles. Here, we review the most recent approaches in the fabrication of electrospun nanofibers incorporating some natural ingredients for their wound healing potential. In addition, electrospun nanofibers for treatment of skin carcinoma and delivery of different growth factors for tissue regeneration will also be highlighted in this review. Nanofibers incorporating different active therapeutical agents are very promising drug delivery platforms.


Subject(s)
Drug Delivery Systems/methods , Nanofibers , Animals , Anti-Infective Agents , Humans , Intercellular Signaling Peptides and Proteins , Nanotechnology , Skin Neoplasms , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL