Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Addict Health ; 15(3): 169-176, 2023 Jul.
Article En | MEDLINE | ID: mdl-38026722

Background: Anxiety is one of the comorbid disorders of opioid addiction, which leads to opioid abuse or persuades people to engage in opioid abuse. Evidence revealed that morphine exposure before conception changes the offspring's phenotype. The current study aimed to investigate the influence of morphine dependence and abstinence on anxiety-like behavior in morphine-exposed and drug-naïve offspring. Methods: Adult male and female rats were treated with morphine or vehicle for 21 days. Then, all rats were left without drug treatment for 10 days. A morphine-exposed female rat was mated with either a vehicle-exposed or morphine-abstinent male. According to parental morphine exposure, the offspring were categorized into four distinct groups: (1) control (both drug-naïve parents), (2) paternal morphine-exposed, (3) maternal morphine-exposed, and (4) biparental morphine-exposed. The anxiety-like behavior was measured in adult male offspring using open field and elevated plus-maze tests before morphine exposure (naïve), 21 days after morphine exposure (dependence), and ten days after the last morphine exposure (abstinence). Findings: The results indicated that anxiety-like behavior increased before morphine exposure in maternal and biparental morphine-exposed offspring (P<0.05). However, after morphine exposure, the anxiety level did not change among the groups. Ten days after the last morphine exposure, anxiety-like behavior increased only in biparental morphine-exposed offspring (P<0.05). Conclusion: The offspring of morphine-abstinent parents exhibited an anxious phenotype. Disruption of the HPA axis was seen in the progeny of maternal and biparental morphine-exposed rats. Indeed, morphine exposure for 21 days did not change anxiety-like behavior in these offspring which might be correlated to disruption of HPA axis in them.

2.
Brain Res Bull ; 156: 141-149, 2020 03.
Article En | MEDLINE | ID: mdl-31958477

It has been demonstrated that alteration in histone acetylation in the regions of the brain involved in the reward which may have an important role in morphine addiction. It is well established that epigenetic changes prior to birth influence the function and development of the brain. The current study was designed to evaluate changes in novel object memory, histone acetylation and ΔFosB in the brain of the offspring of morphine-withdrawn parents. Male and female Wistar rats received morphine orally for 21 following days. After ten days of abstinent, they were prepared for mating. The male offspring of the first parturition were euthanized on postnatal days 5, 21, 30 and 60. The novel object recognition (NOR) test was performed on adult male offspring. The amount of acetylated histone H3 and ΔFosB were evaluated in the prefrontal cortex (PFC) and hippocampus using western blotting. Obtained results indicated that the discrimination index in the NOR test was decreased in the offspring of morphine-withdrawn parents as compared with morphine-naïve offspring. In addition, the level of acetylated histone H3 was decreased in the PFC and hippocampus in the offspring of morphine-withdrawn parents during lifetime (postnatal days 5, 21, 30 and 60). In the case of ΔFosB, it also decreased in these regions in the morphine-withdrawn offspring. These results demonstrated that parental morphine exposure affects NOR memory, and decreased the level of histone H3 acetylation and ΔFosB in the PFC and hippocampus. Taken together, the effect of morphine might be transmitted to the next generation even after stop consuming morphine.


Memory/drug effects , Morphine/adverse effects , Acetylation/drug effects , Animals , Brain/metabolism , Female , Hippocampus/metabolism , Histones/metabolism , Male , Maternal Exposure , Morphine/pharmacology , Paternal Exposure , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar
3.
Eur J Pharmacol ; 865: 172757, 2019 Dec 15.
Article En | MEDLINE | ID: mdl-31693870

Family, adoption and twin studies have highlighted the significant role of heritable influences on individual differences in opioid addiction. Meanwhile, obsessive-compulsive disorder (OCD) is a disorder wherein the individual experiences recurring thoughts that cause irrational fears and anxiety. In the present study, adult male and female rats received morphine solution for 21 days and were drug-free for 10 days. Offspring were used in 4 distinct groups; (1) paternal morphine-exposed, (2) maternal morphine-exposed, (3) maternal and paternal morphine-exposed, and (4) drug-naïve subjects. We assessed the grooming behavior and marble burying test as an indicator of obsessive-compulsive behavior. To clarify the mechanisms underlying these changes, the mRNA level of BDNF, the phosphorylation level of CREB and the protein level of D2 dopamine receptor (DR) were evaluated in the nucleus accumbens (NAc). The grooming behavior in male offspring with one or two morphine-abstinent parent(s) increased compared with the offspring of drug naïve rats. In addition, the offspring of morphine-exposed parents buried more marbles when compared with the offspring of drug-naïve parents. Also, the BDNF mRNA was down-regulated in the NAC. However, the levels of phospho-CREB and D2 DR were elevated. Previous studies indicated that exposure to morphine in adulthood enhances the risk of psychiatric disorders in offspring. OCD is one the comorbid disorders with addiction and increases the risk of substance abuse disorder in patients. In this survey, we found that morphine exposure in parents before gestation can encourage obsessive-compulsive behavior in offspring.


Analgesics, Opioid/adverse effects , Behavior, Animal/drug effects , Compulsive Behavior/chemically induced , Morphine/adverse effects , Obsessive-Compulsive Disorder/chemically induced , Prenatal Exposure Delayed Effects , Animals , Brain-Derived Neurotrophic Factor/genetics , Compulsive Behavior/metabolism , Disease Models, Animal , Female , Grooming/drug effects , Male , Maternal-Fetal Exchange , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Obsessive-Compulsive Disorder/metabolism , Pregnancy , Rats, Wistar , Receptors, Dopamine D2/metabolism
4.
Brain Res Bull ; 144: 122-131, 2019 01.
Article En | MEDLINE | ID: mdl-30503221

It has been proven that exposure to some drugs even before gestation had transgenerational effects. To investigate the changes which induced by parental morphine exposure before gestation; mainly the anxiety-like behavior, Corticotropin Releasing Factor (CRF) level in the CSF and plasma, CRF Receptor 1 (CRFR1), and the level of protein kinase C (PKC-α) were evaluated in the male offspring. Male and female Wistar rats were exposed to morphine for 21 following days. Ten days after last drug exposure, animals were prepared for mating in 4 distinct groups as follow: drug-naïve female and male (used as control), drug-naïve female and morphine-abstinent male, drug-naïve male and morphine-abstinent female, and morphine abstinent male and female. Offspring were subjected to assess anxiety-like behavior (using elevated plus maze test). CSF and plasma were gathered, and the CRF level was evaluated by ELISA. Using real-time PCR, the CRFR1 level in the brain was evaluated. Results showed that anxiety-like behavior increased in the offspring of morphine-abstinent parent(s) compared with the control group. CRF level in the plasma and CSF also increased in the litter of morphine-abstinent parent(s). CRFR1 mRNA level was upregulated in the brain of offspring with one and/or two morphine-abstinent parent(s). Furthermore, the level of PKC-α was decreased in the brain of offspring which had one and/or two morphine-abstinent parent(s). Taken together, our findings indicated that morphine exposure even before gestation induced transgenerational effects via dysregulation of HPA axis which results in anxiety in the adult male offspring.


Maternal Exposure/adverse effects , Morphine/adverse effects , Animals , Anxiety/etiology , Anxiety/metabolism , Corticotropin-Releasing Hormone/analysis , Corticotropin-Releasing Hormone/blood , Corticotropin-Releasing Hormone/cerebrospinal fluid , Female , Hypothalamo-Hypophyseal System/metabolism , Male , Maze Learning/drug effects , Narcotics/adverse effects , Pituitary-Adrenal System/metabolism , Pregnancy , Protein Kinase C/analysis , Protein Kinase C/metabolism , Rats , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/analysis , Receptors, Corticotropin-Releasing Hormone/metabolism
...