Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 9: 1473, 2018.
Article in English | MEDLINE | ID: mdl-30405652

ABSTRACT

Microbes of the phytomicrobiome are associated with every plant tissue and, in combination with the plant form the holobiont. Plants regulate the composition and activity of their associated bacterial community carefully. These microbes provide a wide range of services and benefits to the plant; in return, the plant provides the microbial community with reduced carbon and other metabolites. Soils are generally a moist environment, rich in reduced carbon which supports extensive soil microbial communities. The rhizomicrobiome is of great importance to agriculture owing to the rich diversity of root exudates and plant cell debris that attract diverse and unique patterns of microbial colonization. Microbes of the rhizomicrobiome play key roles in nutrient acquisition and assimilation, improved soil texture, secreting, and modulating extracellular molecules such as hormones, secondary metabolites, antibiotics, and various signal compounds, all leading to enhancement of plant growth. The microbes and compounds they secrete constitute valuable biostimulants and play pivotal roles in modulating plant stress responses. Research has demonstrated that inoculating plants with plant-growth promoting rhizobacteria (PGPR) or treating plants with microbe-to-plant signal compounds can be an effective strategy to stimulate crop growth. Furthermore, these strategies can improve crop tolerance for the abiotic stresses (e.g., drought, heat, and salinity) likely to become more frequent as climate change conditions continue to develop. This discovery has resulted in multifunctional PGPR-based formulations for commercial agriculture, to minimize the use of synthetic fertilizers and agrochemicals. This review is an update about the role of PGPR in agriculture, from their collection to commercialization as low-cost commercial agricultural inputs. First, we introduce the concept and role of the phytomicrobiome and the agricultural context underlying food security in the 21st century. Next, mechanisms of plant growth promotion by PGPR are discussed, including signal exchange between plant roots and PGPR and how these relationships modulate plant abiotic stress responses via induced systemic resistance. On the application side, strategies are discussed to improve rhizosphere colonization by PGPR inoculants. The final sections of the paper describe the applications of PGPR in 21st century agriculture and the roadmap to commercialization of a PGPR-based technology.

2.
Biomacromolecules ; 16(10): 3322-8, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26351729

ABSTRACT

The preparation of composites of living functional cells and polymers is a major challenge. We have fabricated such "living composites" by preparation of polymeric microtubes that entrap yeast cells. Our approach was the process of coaxial electrospinning in which a core containing the yeast was "spun" within a shell of nonbiodegradable polymer. We utilized the yeast Candida tropicalis, which was isolated from olive water waste. It is particularly useful since it degrades phenol and other natural polyphenols, and it is capable of accumulating ethanol. The electrospun yeast cells showed significant activity of bioremediation of phenol and produced ethanol, and, in addition, the metabolic processes remained active for a prolonged period. Comparison of electrospun cells to planktonic cells showed decreased cell activity; however, the olive water waste after treatment by the yeast was no longer toxic for Escherichia coli, suggesting that detoxification and prolonged viability and activity may outweigh the reduction of efficiency.


Subject(s)
Biodegradation, Environmental , Candida tropicalis/metabolism , Ethanol/metabolism , Microscopy, Electron, Scanning
3.
Biotechnol Bioeng ; 108(11): 2770-5, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21618466

ABSTRACT

Putative gene predictions of the Gram positive actinobacteria Micrococcus luteus (NCTC 2665, "Fleming strain") was used to construct a genome scale reconstruction of the metabolic network for this organism. The metabolic network comprises 586 reactions and 551 metabolites, and accounts for 21% of the genes in the genome. The reconstruction was based on the annotated genome and available biochemical information. M. luteus has one of the smallest genomes of actinobacteria with a circular chromosome of 2,501,097 base pairs and a GC content of 73%. The metabolic pathways required for biomass production in silico were determined based on earlier models of actinobacteria. The in silico network is used for metabolic comparison of M. luteus with other actinomycetes, and hence provides useful information for possible future biotechnological exploitation of this organism, e.g., for production of biofuels.


Subject(s)
Actinobacteria/genetics , Actinobacteria/metabolism , Metabolic Networks and Pathways/genetics , Metabolome , Computer Simulation
4.
J Bacteriol ; 192(3): 841-60, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19948807

ABSTRACT

Micrococcus luteus (NCTC2665, "Fleming strain") has one of the smallest genomes of free-living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097 bp (G+C content, 73%) predicted to encode 2,403 proteins. The genome shows extensive synteny with that of the closely related organism, Kocuria rhizophila, from which it was taxonomically separated relatively recently. Despite its small size, the genome harbors 73 insertion sequence (IS) elements, almost all of which are closely related to elements found in other actinobacteria. An IS element is inserted into the rrs gene of one of only two rrn operons found in M. luteus. The genome encodes only four sigma factors and 14 response regulators, a finding indicative of adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of M. luteus to beta-lactam antibiotics may result from the presence of a reduced set of penicillin-binding proteins and the absence of a wblC gene, which plays an important role in the antibiotic resistance in other actinobacteria. Consistent with the restricted range of compounds it can use as a sole source of carbon for energy and growth, M. luteus has a minimal complement of genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase. Uniquely among characterized bacteria, M. luteus appears to be able to metabolize glycogen only via trehalose and to make trehalose only via glycogen. It has very few genes associated with secondary metabolism. In contrast to most other actinobacteria, M. luteus encodes only one resuscitation-promoting factor (Rpf) required for emergence from dormancy, and its complement of other dormancy-related proteins is also much reduced. M. luteus is capable of long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three-gene cluster essential for this metabolism has been identified in the genome.


Subject(s)
Actinobacteria/genetics , Genome, Bacterial/genetics , Micrococcus luteus/genetics , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Models, Genetic
5.
Nat Prod Rep ; 24(6): 1262-87, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18033579

ABSTRACT

The synthesis of secondary metabolites by microorganisms, specifically antibiotics, is of great scientific and economic importance. The onset (control and regulation) of secondary metabolite formation has and still is intriguing scientists both in industry and academia. Despite many studies, there is little known about the molecular mechanisms underlying the regulation of secondary metabolism. With the recent developments in genomics and further development of advanced post-genomic techniques, it will be possible to apply a more holistic analysis to the regulation of antibiotic production in microorganisms. Here we review current knowledge about the control and regulation of secondary metabolites, with a focus on antibiotics. We will also review developments in the genomics of antibiotic-producing microorganisms, and discuss the use of systems biology for gaining a better understanding of the networks involved in regulation of antibiotic production.


Subject(s)
Anti-Bacterial Agents , Bacteria , Biological Products , Systems Biology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacteria/chemistry , Bacteria/enzymology , Bacteria/metabolism , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL