Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
bioRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405835

ABSTRACT

Both domestic and non-domestic cats are now established to be susceptible to infection by SARS-CoV-2, the cause of the ongoing COVID-19 pandemic. While serious disease in cats may occur in some instances, the majority of infections appear to be subclinical. Differing prevalence data for SARS-CoV-2 infection of cats have been reported, and are highly context-dependent. Here, we report a retrospective serological survey of cats presented to an animal practice in New York City, located in close proximity to a large medical center that treated the first wave of COVID-19 patients in the US in the Spring of 2020. We sampled 79, mostly indoor, cats between June 2020 to May 2021, the early part of which time the community was under a strict public health "lock-down". Using a highly sensitive and specific fluorescent bead-based multiplex assay, we found an overall prevalence of 13/79 (16%) serologically-positive animals for the study period; however, cats sampled in the Fall of 2020 had a confirmed positive prevalence of 44%. For SARS-CoV-2 seropositive cats, we performed viral neutralization test with live SARS-CoV-2 to additionally confirm presence of SARS-CoV-2 specific antibodies. Of the thirteen seropositive cats, 7/13 (54%) were also positive by virus neutralization, and 2 of seropositive cats had previously documented respiratory signs, with high neutralization titers of 1:1024 and 1:4096; overall however, there was no statistically significant association of SARS-CoV-2 seropositivity with respiratory signs, or with breed, sex or age of the animals. Follow up sampling of cats, while limited in scope, showed that positive serological titers were maintained over time. In comparison, we found an overall confirmed positive prevalence of 51% for feline coronavirus (FCoV), an endemic virus of cats, with 30% confirmed negative for FCoV. We demonstrate the impact of SARS-CoV in a defined feline population during the first wave of SARS-CoV-2 infection of humans, and suggest that human-cat transmission was substantial in our study group. Our data provide a new context for SARS-CoV-2 transmission events across species.

2.
Equine Vet J ; 56(4): 678-687, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38219734

ABSTRACT

BACKGROUND: Endometrial biopsy is required to diagnose mares with chronic endometritis and endometrial degenerative fibrosis. An increase in understanding of equine reproductive immunology could be utilised to create less-invasive, time-efficient diagnostic tools especially when evaluating mares for chronic endometritis. OBJECTIVES: To evaluate inflammatory cytokine and chemokine concentrations in uterine fluid samples collected by low-volume lavage (LVL) as a potential screening diagnostic biomarker for endometritis. STUDY DESIGN: Prospective cross-sectional clinical study. METHODS: Forty-six mares underwent a LVL and subsequently endometrial biopsy. Mares were split in three groups: healthy, acute endometritis, and chronic endometrial fibrosis (CEF) based on cytological and histological evaluation. A fluorescent bead-based multiplex assay for IFN-γ, IFN-α, IL-1ß, IL-4, IL-10, IL-17, sCD14, TNF-α, CCL2, CCL3, CCL5 and CCL11 were carried out on the LVL fluid. The endometrial biopsy was utilised for histology and qPCR of IFN-γ, IL-1ß, IL-6, IL-8, IL-17, TNF-α, CCL2 and CCL3 genes. Statistical analyses examined differences in inflammatory markers and predictive modelling for diseased endometrium. RESULTS: Secreted concentrations of IFN-γ were lower in LVL fluid from reproductively healthy mares compared with acute endometritis (p = 0.04) and CEF (p = 0.006). Additionally, IL-17, IL-10, IL-1ß, TNF-α, CCL2, CCL3, CCL5 and CCL11 were significantly increased (p ≤ 0.04) in LVL from CEF mares compared with healthy mares. Mares with CCL2 concentrations ≥550 pg/mL (14/14) had 100% probability of having CEF and/or acute endometritis. Healthy mares had lower relative abundance of IL-17 mRNA compared with mares in CEF group [median (interquartile rage) = 14.76 (13.3, 15.3) and 12.4 (10.54, 13.81)], respectively (p = 0.02). MAIN LIMITATIONS: Limited sample size: larger numbers of mares with and without endometritis are required and reference intervals in LVL samples have to be established. CONCLUSIONS: Inflammatory chemokines and cytokines concentrations differed between healthy mares and mares with acute endometritis or CEF in LVL.


Subject(s)
Biomarkers , Cytokines , Endometritis , Horse Diseases , Animals , Female , Endometritis/veterinary , Endometritis/diagnosis , Horses , Horse Diseases/diagnosis , Horse Diseases/metabolism , Cytokines/metabolism , Cytokines/genetics , Biomarkers/metabolism , Cross-Sectional Studies , Gene Expression Regulation , Inflammation/veterinary
3.
PLoS One ; 17(1): e0262868, 2022.
Article in English | MEDLINE | ID: mdl-35061843

ABSTRACT

A serological COVID-19 Multiplex Assay was developed and validated using serum samples from convalescent patients and those collected prior to the 2020 pandemic. After initial testing of multiple potential antigens, the SARS-CoV-2 nucleocapsid protein (NP) and receptor-binding domain (RBD) of the spike protein were selected for the human COVID-19 Multiplex Assay. A comparison of synthesized and mammalian expressed RBD proteins revealed clear advantages of mammalian expression. Antibodies directed against NP strongly correlated with SARS-CoV-2 virus neutralization assay titers (rsp = 0.726), while anti-RBD correlation was moderate (rsp = 0.436). Pan-Ig, IgG, IgA, and IgM against NP and RBD antigens were evaluated on the validation sample sets. Detection of NP and RBD specific IgG and IgA had outstanding performance (AUC > 0.90) for distinguishing patients from controls, but the dynamic range of the IgG assay was substantially greater. The COVID-19 Multiplex Assay was utilized to identify seroprevalence to SARS-CoV-2 in people living in a low-incidence community in Ithaca, NY. Samples were taken from a cohort of healthy volunteers (n = 332) in early June 2020. Only two volunteers had a positive result on a COVID-19 PCR test performed prior to serum sampling. Serological testing revealed an exposure rate of at least 1.2% (NP) or as high as 5.7% (RBD), higher than the measured incidence rate of 0.16% in the county at that time. This highly sensitive and quantitative assay can be used for monitoring community exposure rates and duration of immune response following both infection and vaccination.


Subject(s)
Antibodies, Viral/chemistry , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19 Serological Testing/standards , Coronavirus Nucleocapsid Proteins/chemistry , Epidemiological Monitoring , Female , Humans , Immunoglobulin A/chemistry , Immunoglobulin A/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin M/chemistry , Immunoglobulin M/immunology , Male , Middle Aged , New York/epidemiology , Phosphoproteins/chemistry , Phosphoproteins/immunology , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , SARS-CoV-2/classification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/chemistry
4.
Arthritis Res Ther ; 23(1): 218, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34416923

ABSTRACT

BACKGROUND: TNF-α-stimulated gene 6 (TSG-6) protein, a TNF-α-responsive hyaladherin, possesses enzymatic activity that can catalyze covalent crosslinks of the polysaccharide hyaluronic acid (HA) to another protein to form heavy chain-hyaluronic acid (HC-HA) complexes in pathological conditions such as osteoarthritis (OA). Here, we examined HA synthase and inflammatory gene expression; synovial fluid HA, TNF-α, and viscosity; and TSG-6-mediated HC-HA complex formation in an equine OA model. The objectives of this study were to (1) evaluate the TNF-α-TSG-6-HC-HA signaling pathway across multiple joint tissues, including synovial membrane, cartilage, and synovial fluid, and (2) determine the impact of OA on synovial fluid composition and biophysical properties. METHODS: HA and inflammatory cytokine concentrations (TNF-α, IL-1ß, CCL2, 3, 5, and 11) were analyzed in synovial fluid from 63 OA and 25 control joints, and HA synthase (HAS1-3), TSG-6, and hyaluronan-degrading enzyme (HYAL2, HEXA) gene expression was measured in synovial membrane and cartilage. HA molecular weight (MW) distributions were determined using agarose gel electrophoresis and solid-state nanopore measurements, and HC-HA complex formation was detected via immunoblotting and immunofluorescence. SEC-MALS was used to evaluate TSG-6-mediated HA crosslinking, and synovial fluid and HA solution viscosities were analyzed using multiple particle-tracking microrheology and microfluidic measurements, respectively. RESULTS: TNF-α concentrations were greater in OA synovial fluid, and TSG6 expression was upregulated in OA synovial membrane and cartilage. TSG-6-mediated HC-HA complex formation was greater in OA synovial fluid and tissues than controls, and HC-HA was localized to both synovial membrane and superficial zone chondrocytes in OA joints. SEC-MALS demonstrated macromolecular aggregation of low MW HA in the presence of TSG-6 and inter-α-inhibitor with concurrent increases in viscosity. CONCLUSIONS: Synovial fluid TNF-α concentrations, synovial membrane and cartilage TSG6 gene expression, and HC-HA complex formation were increased in equine OA. Despite the ability of TSG-6 to induce macromolecular aggregation of low MW HA with resultant increases in the viscosity of low MW HA solutions in vitro, HA concentration was the primary determinant of synovial fluid viscosity rather than HA MW or HC-HA crosslinking. The TNF-α-TSG-6-HC-HA pathway may represent a potential therapeutic target in OA.


Subject(s)
Hyaluronic Acid , Osteoarthritis , Animals , Chondrocytes , Horses , Osteoarthritis/genetics , Synovial Fluid , Tumor Necrosis Factor-alpha
5.
BMC Vet Res ; 17(1): 189, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980227

ABSTRACT

BACKGROUND: Lameness is a debilitating condition in equine athletes that leads to more performance limitation and loss of use than any other medical condition. There are a limited number of non-terminal experimental models that can be used to study early inflammatory and synovial fluid biophysical changes that occur in the equine joint. Here, we compare the well-established carpal IL-1ß-induced synovitis model to a tarsal intra-articular lavage model, focusing on serial changes in synovial fluid inflammatory cytokines/chemokines and the synovial fluid lubricating molecules lubricin/proteoglycan 4 and hyaluronic acid. The objectives of this study were to evaluate clinical signs; synovial membrane and synovial fluid inflammation; and synovial fluid lubricants and biophysical properties in response to carpal IL-1ß synovitis and tarsal intra-articular lavage. RESULTS: Hyaluronic acid (HA) concentrations, especially high molecular weight HA, and synovial fluid viscosity decreased after both synovitis and lavage interventions. Synovial fluid lubricin concentrations increased 17-20-fold for both synovitis and lavage models, with similar changes in both affected and contralateral joints, suggesting that repeated arthrocentesis alone resulted in elevated synovial fluid lubricin concentrations. Synovitis resulted in a more severe inflammatory response based on clinical signs (temperature, heart rate, respiratory rate, lameness and joint effusion) and clinicopathological and biochemical parameters (white blood cell count, total protein, prostaglandin E2, sulfated glycosaminoglycans, tumor necrosis factor-α and CC chemokine ligands - 2, - 3, - 5 and - 11) as compared to lavage. CONCLUSIONS: Synovial fluid lubricin increased in response to IL-1ß synovitis and joint lavage but also as a result of repeated arthrocentesis. Frequent repeated arthrocentesis is associated with inflammatory changes, including increased sulfated glycosaminoglycan concentrations and decreased hyaluronic acid concentrations. Synovitis results in more significant inflammatory changes than joint lavage. Our data suggests that synovial fluid lubricin, TNF-α, CCL2, CCL3, CCL5, CCL11 and sGAG may be useful biomarkers for synovitis and post-lavage joint inflammation. Caution should be exercised when performing repeated arthrocentesis clinically or in experimental studies due to the inflammatory response and loss of HA and synovial fluid viscosity.


Subject(s)
Horse Diseases , Interleukin-1beta/administration & dosage , Synovial Fluid/metabolism , Synovitis/pathology , Animals , Arthrocentesis/adverse effects , Arthrocentesis/veterinary , Cytokines/metabolism , Female , Glycoproteins/metabolism , Horses , Hyaluronic Acid/metabolism , Inflammation , Injections, Intra-Articular/veterinary , Interleukin-1beta/adverse effects , Male , Synovitis/chemically induced , Synovitis/metabolism , Therapeutic Irrigation/veterinary
6.
J Virol ; 95(11)2021 05 10.
Article in English | MEDLINE | ID: mdl-33692203

ABSTRACT

The origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing the global coronavirus disease 19 (COVID-19) pandemic, remains a mystery. Current evidence suggests a likely spillover into humans from an animal reservoir. Understanding the host range and identifying animal species that are susceptible to SARS-CoV-2 infection may help to elucidate the origin of the virus and the mechanisms underlying cross-species transmission to humans. Here we demonstrated that white-tailed deer (Odocoileus virginianus), an animal species in which the angiotensin converting enzyme 2 (ACE2) - the SARS-CoV-2 receptor - shares a high degree of similarity to humans, are highly susceptible to infection. Intranasal inoculation of deer fawns with SARS-CoV-2 resulted in established subclinical viral infection and shedding of infectious virus in nasal secretions. Notably, infected animals transmitted the virus to non-inoculated contact deer. Viral RNA was detected in multiple tissues 21 days post-inoculation (pi). All inoculated and indirect contact animals seroconverted and developed neutralizing antibodies as early as day 7 pi. The work provides important insights into the animal host range of SARS-CoV-2 and identifies white-tailed deer as a susceptible wild animal species to the virus.IMPORTANCEGiven the presumed zoonotic origin of SARS-CoV-2, the human-animal-environment interface of COVID-19 pandemic is an area of great scientific and public- and animal-health interest. Identification of animal species that are susceptible to infection by SARS-CoV-2 may help to elucidate the potential origin of the virus, identify potential reservoirs or intermediate hosts, and define the mechanisms underlying cross-species transmission to humans. Additionally, it may also provide information and help to prevent potential reverse zoonosis that could lead to the establishment of a new wildlife hosts. Our data show that upon intranasal inoculation, white-tailed deer became subclinically infected and shed infectious SARS-CoV-2 in nasal secretions and feces. Importantly, indirect contact animals were infected and shed infectious virus, indicating efficient SARS-CoV-2 transmission from inoculated animals. These findings support the inclusion of wild cervid species in investigations conducted to assess potential reservoirs or sources of SARS-CoV-2 of infection.

7.
J Virol ; 93(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31462575

ABSTRACT

Equine herpesvirus type 1 (EHV-1) outbreaks continue to occur despite widely used vaccination. Therefore, development of EHV-1 vaccines providing improved immunity and protection is ongoing. Here, an open reading frame 2 deletion mutant of the neuropathogenic EHV-1 strain Ab4 (Ab4ΔORF2) was tested as a vaccine candidate. Three groups of horses (n = 8 each) were infected intranasally with Ab4ΔORF2 or the parent Ab4 virus or were kept as noninfected controls. Horses infected with Ab4ΔORF2 had reduced fever and nasal virus shedding compared to those infected with Ab4 but mounted similar adaptive immunity dominated by antibody responses. Nine months after the initial infection, all horses were challenged intranasally with Ab4. Previously noninfected horses (control/Ab4) displayed clinical signs, shed large amounts of virus, and developed cell-associated viremia. In contrast, 5/8 or 3/8 horses previously infected with Ab4ΔORF2 or Ab4, respectively, were fully protected from challenge infection as indicated by the absence of fever, clinical disease, nasal virus shedding, and viremia. All of these outcomes were significantly reduced in the remaining, partially protected 3/8 (Ab4ΔORF2/Ab4) and 5/8 (Ab4/Ab4) horses. Protected horses had EHV-1-specific IgG4/7 antibodies prior to challenge infection, and intranasal antibodies increased rapidly postchallenge. Intranasal inflammatory markers were not detectable in protected horses but quickly increased in control/Ab4 horses during the first week after infection. Overall, our data suggest that preexisting nasal IgG4/7 antibodies neutralize EHV-1, prevent viral entry, and thereby protect from disease, viral shedding, and cell-associated viremia. In conclusion, improved protection from challenge infection emphasizes further evaluation of Ab4ΔORF2 as a vaccine candidate.IMPORTANCE Nasal equine herpesvirus type 1 (EHV-1) shedding is essential for virus transmission during outbreaks. Cell-associated viremia is a prerequisite for the most severe disease outcomes, abortion and equine herpesvirus myeloencephalopathy (EHM). Thus, protection from viremia is considered essential for preventing EHM. Ab4ΔORF2 vaccination prevented EHV-1 challenge virus replication in the upper respiratory tract in fully protected horses. Consequently, these neither shed virus nor developed cell-associated viremia. Protection from virus shedding and viremia during challenge infection in combination with reduced virulence at the time of vaccination emphasizes ORF2 deletion as a promising modification for generating an improved EHV-1 vaccine. During this challenge infection, full protection was linked to preexisting local and systemic EHV-1-specific antibodies combined with rapidly increasing intranasal IgG4/7 antibodies and lack of nasal type I interferon and chemokine induction. These host immune parameters may constitute markers of protection against EHV-1 and be utilized as indicators for improved vaccine development and informed vaccination strategies.


Subject(s)
Herpesvirus 1, Equid/genetics , Herpesvirus 1, Equid/immunology , Herpesvirus Vaccines/immunology , Horse Diseases/virology , Administration, Intranasal/methods , Animals , Antibodies, Viral , Female , Herpesviridae Infections/virology , Herpesvirus 1, Equid/metabolism , Horses , Male , Nasal Mucosa/virology , Open Reading Frames , Rhadinovirus/immunology , Vaccination/veterinary , Viremia/immunology , Virulence , Virus Shedding/immunology
8.
Virology ; 531: 219-232, 2019 05.
Article in English | MEDLINE | ID: mdl-30928700

ABSTRACT

Equid herpesvirus-1 (EHV-1) outbreaks continue despite widely used vaccination. We demonstrated previously that an ORF1/ORF71 gene deletion mutant of the EHV-1 strain Ab4 (Ab4ΔORF1/71) is less virulent than its parent Ab4 virus. Here, we describe the Ab4 challenge infection evaluating protection induced by the Ab4ΔORF1/71 vaccine candidate. Susceptible control horses developed respiratory disease, fever, nasal shedding, and viremia. Full protection after challenge infection was observed in 5/5 previously Ab4 infected horses and 3/5 Ab4ΔORF1/71 horses. Two Ab4ΔORF1/71 horses developed short-lasting viremia and/or virus shedding. Protective immunity in the respiratory tract was characterized by pre-existing EHV-1-specific IgG4/7 antibodies, the absence of IFN-α secretion and rapidly increasing IgG4/7 upon challenge infection. Pre-existing systemic EHV-1-specific IgG4/7 highly correlated with protection. T-cell immunity was overall low. In conclusion, protective immunity against EHV-1 infection including prevention of viremia was associated with robust systemic and intranasal IgG4/7 antibodies suggesting immediate virus neutralization at the local site.


Subject(s)
Antibodies, Viral/immunology , Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/immunology , Herpesvirus Vaccines/administration & dosage , Horse Diseases/prevention & control , Immunoglobulin G/immunology , Viremia/veterinary , Administration, Intranasal , Animals , Female , Herpesviridae Infections/immunology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/virology , Herpesvirus 1, Equid/drug effects , Herpesvirus 1, Equid/genetics , Herpesvirus 1, Equid/physiology , Herpesvirus Vaccines/immunology , Horse Diseases/immunology , Horse Diseases/virology , Horses , Male , Nasal Mucosa/immunology , Nasal Mucosa/virology , Vaccination , Viremia/immunology , Viremia/prevention & control , Viremia/virology , Virus Shedding
9.
PLoS One ; 13(11): e0206679, 2018.
Article in English | MEDLINE | ID: mdl-30440016

ABSTRACT

The equine herpesvirus type 1 (EHV-1) ORF1 and ORF71 genes have immune modulatory effects in vitro. Experimental infection of horses using virus mutants with multiple deletions including ORF1 and ORF71 showed promise as vaccine candidates against EHV-1. Here, the combined effects of ORF1 and ORF71 deletions from the neuropathogenic EHV-1 strain Ab4 on clinical disease and host immune response were further explored. Three groups of EHV-1 naïve horses were experimentally infected with the ORF1/71 gene deletion mutant (Ab4ΔORF1/71), the parent Ab4 strain, or remained uninfected. In comparison to Ab4, horses infected with Ab4ΔORF1/71 did not show the initial high fever peak characteristic of EHV-1 infection. Ab4ΔORF1/71 infection had reduced nasal shedding (1/5 vs. 5/5) and, simultaneously, decreased intranasal interferon (IFN)-α, interleukin (IL)-10 and soluble CD14 secretion. However, Ab4 and Ab4ΔORF1/71 infection resulted in comparable viremia, suggesting these genes do not regulate the infection of the mononuclear cells and subsequent viremia. Intranasal and serum anti-EHV-1 antibodies to Ab4ΔORF1/71 developed slightly slower than those to Ab4. However, beyond day 12 post infection (d12pi) serum antibodies in both virus-infected groups were similar and remained increased until the end of the study (d114pi). EHV-1 immunoglobulin (Ig) G isotype responses were dominated by short-lasting IgG1 and long-lasting IgG4/7 antibodies. The IgG4/7 response closely resembled the total EHV-1 specific antibody response. Ex vivo re-stimulation of PBMC with Ab4 resulted in IFN-γ and IL-10 secretion by cells from both infected groups within two weeks pi. Flow cytometric analysis showed that IFN-γ producing EHV-1-specific T-cells were mainly CD8+/IFN-γ+ and detectable from d32pi on. Peripheral blood IFN-γ+ T-cell percentages were similar in both infected groups, albeit at low frequency (~0.1%). In summary, the Ab4ΔORF1/71 gene deletion mutant is less virulent but induced antibody responses and cellular immunity similar to the parent Ab4 strain.


Subject(s)
Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/genetics , Herpesvirus 1, Equid/pathogenicity , Horse Diseases/immunology , Horse Diseases/virology , Viral Proteins/genetics , Animals , Antibodies, Viral/metabolism , Body Temperature , Cytokines/metabolism , Female , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Horses , Immunity, Cellular , Immunoglobulin G/metabolism , Male , Mutation , Nose/immunology , Nose/virology , Random Allocation , Viremia/immunology , Viremia/veterinary , Virulence , Virus Shedding
10.
BMC Vet Res ; 14(1): 245, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30134896

ABSTRACT

BACKGROUND: Equine herpesvirus type 1 (EHV-1) induces respiratory infection, abortion, and neurologic disease with significant impact. Virulence factors contributing to infection and immune evasion are of particular interest. A potential virulence factor of the neuropathogenic EHV-1 strain Ab4 is ORF2. This study on 24 Icelandic horses, 2 to 4 years of age, describes the infection with EHV-1 Ab4, or its deletion mutant devoid of ORF2 (Ab4ΔORF2) compared to non-infected controls (each group n = 8). The horses' clinical presentation, virus shedding, viremia, antibody and cellular immune responses were monitored over 260 days after experimental infection. RESULTS: Infection with Ab4ΔORF2 reduced fever and minimized nasal virus shedding after infection compared to the parent virus strain Ab4, while Ab4ΔORF2 established viremia similar to Ab4. Concurrently with virus shedding, intranasal cytokine and interferon α (IFN-α) production increased in the Ab4 group, while horses infected with Ab4ΔORF2 expressed less IFN-α. The antibody response to EHV-1 was evaluated by a bead-based multiplex assay and was similar in both infected groups, Ab4 and Ab4ΔORF2. EHV-1 specific immunoglobulin (Ig) G1 was induced 8 days after infection (d8 pi) with a peak on d10-12 pi. EHV-1 specific IgG4/7 increased starting on d10 pi, and remained elevated in serum until the end of the study. The intranasal antibody response to EHV-1 was dominated by the same IgG isotypes and remained elevated in both infected groups until d130 pi. In contrast to the distinct antibody response, no induction of EHV-1 specific T-cells was detectable by flow cytometry after ex vivo re-stimulation of peripheral blood mononuclear cells (PBMC) with EHV-1 in any group. The cellular immune response was characterized by increased secretion of IFN-γ and interleukin10 in response to ex vivo re-stimulation of PBMC with EHV-1. This response was present during the time of viremia (d5-10 pi) and was similar in both infected groups, Ab4 and Ab4ΔORF2. CONCLUSIONS: ORF2 is a virulence factor of EHV-1 Ab4 with impact on pyrexia and virus shedding from the nasal mucosa. In contrast, ORF2 does not influence viremia. The immunogenicity of the Ab4ΔORF2 and parent Ab4 viruses are identical. Graphical abstract - Deletion of ORF2 reduces virulence of EHV-1 Ab4. Graphical summary of the main findings of this study: ORF2 is a virulence factor of EHV-1 Ab4 with impact on pyrexia and virus shedding from the nasal mucosa.


Subject(s)
Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/genetics , Herpesvirus 1, Equid/pathogenicity , Horse Diseases/virology , Viral Proteins/genetics , Virulence Factors/genetics , Virulence/genetics , Animals , Cytokines/metabolism , Female , Herpesvirus 1, Equid/immunology , Horse Diseases/immunology , Horses , Leukocytes, Mononuclear/virology , Male , Nasal Mucosa/virology , Sequence Deletion , Viremia/veterinary , Virus Shedding/genetics
11.
Vet Immunol Immunopathol ; 153(3-4): 187-93, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23541920

ABSTRACT

Horses have 11 immunoglobulin isotypes: IgM, IgD, IgA, IgE, and seven IgG subclasses designated as IgG1-IgG7, each of which are distinguished by separate genes encoding the constant heavy chain regions. Immunoglobulin (Ig) isotypes have different functions during the immune response and pathogen-specific isotypes can be used as indicators for immunity and protection from disease. In addition to existing monoclonal antibodies to various equine Igs, quantification of the individual isotypes requires pure isotype standards. In this report, we describe a fusion between X63-Ag8.653 mouse myeloma cells and horse PBMC to create equine-murine heterohybridomas. Initial screening for Ig production was performed by ELISA. Further testing was performed by a new 5-plex fluorescent bead-based assay able to simultaneously detect equine IgM, IgG1, IgG4/7, IgG5, and IgG6. Production of IgG3 and IgE was tested by separate bead assays. Seven stable heterohybridoma clones producing monoclonal equine IgM, IgG1, IgG3, IgG4/7, IgG5, IgG6 and IgE were created. Purified Ig isotypes were then tested by SDS-PAGE. The pure, monoclonal equine Ig isotypes and the new equine Ig multiplex testing developed here are valuable tools to quantify antibody responses and to accurately determine individual isotypes concentrations in horses.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Immunoglobulin Isotypes/biosynthesis , Animals , Antibodies, Monoclonal/immunology , Cell Fusion , Horses , Hybridomas/immunology , Immunoglobulin Isotypes/immunology , Mice , Molecular Weight
12.
Clin Vaccine Immunol ; 19(4): 527-35, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22336289

ABSTRACT

Lyme disease in the United States is caused by Borrelia burgdorferi sensu stricto, which is transmitted to mammals by infected ticks. Borrelia spirochetes differentially express immunogenic outer surface proteins (Osp). Our aim was to evaluate antibody responses to Osp antigens to aid the diagnosis of early infection and the management of Lyme disease. We analyzed antibody responses during the first 3 months after the experimental infection of dogs using a novel multiplex assay. Results were compared to those obtained with two commercial assays detecting C6 antigen. Multiplex analysis identified antibodies to OspC and C6 as early as 3 weeks postinfection (p.i.) and those to OspF by 5 weeks p.i. Antibodies to C6 and OspF increased throughout the study, while antibodies to OspC peaked between 7 and 11 weeks p.i. and declined thereafter. A short-term antibody response to OspA was observed in 3/8 experimentally infected dogs on day 21 p.i. Quant C6 enzyme-linked immunosorbent assay (ELISA) results matched multiplex results during the first 7 weeks p.i.; however, antibody levels subsequently declined by up to 29%. Immune responses then were analyzed in sera from 125 client-owned dogs and revealed high agreement between antibodies to OspF and C6 as robust markers for infection. Results from canine patient sera supported that OspC is an early infection marker and antibodies to OspC decline over time. The onset and decline of antibody responses to B. burgdorferi Osp antigens and C6 reflect their differential expression during infection. They provide valuable tools to determine the stage of infection, treatment outcomes, and vaccination status in dogs.


Subject(s)
Antibodies, Bacterial/blood , Antigens, Bacterial , Borrelia burgdorferi/immunology , Clinical Laboratory Techniques/methods , Dog Diseases/diagnosis , Lyme Disease/veterinary , Veterinary Medicine/methods , Animals , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Dogs , Female , Immunoassay/methods , Lyme Disease/diagnosis , Male , United States
13.
Vet Immunol Immunopathol ; 144(3-4): 374-81, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21890217

ABSTRACT

Lyme disease is a zoonotic, vector-borne disease and occurs in mammals including horses. The disease is induced by infection with spirochetes of the Borrelia burgdorferi sensu lato group. Infection of mammalian hosts requires transmission of spirochetes by infected ticks during tick bites. Lyme disease diagnosis is based on clinical signs, possible exposure to infected ticks, and antibody testing which is traditionally performed by ELISA and Western blotting (WB). This report describes the development and validation of a new fluorescent bead-based multiplex assay for the detection of antibodies to B. burgdorferi outer surface protein A (OspA), OspC and OspF antigens in horse serum. Testing of 562 equine sera was performed blindly and in parallel by using WB and the new multiplex assay. Because a true gold standard is missing for Lyme antibody testing, we performed and compared different statistical approaches to validate the new Lyme multiplex assay. One approach was to use WB results as a 'relative gold standard' in ROC-curve and likelihood-ratio analyses of the new test. Cut-off values and interpretation ranges of the multiplex assay were established by the analysis. The second statistical approach used a Bayesian model for the calculation of diagnostic sensitivities and specificities of the multiplex assay. The Bayesian analysis takes into consideration that no true gold standard exists for detecting antibodies to B. burgdorferi and estimated sensitivities and specificities of both tests that were compared. Therefore, the Bayesian analysis also resulted in an evaluation of diagnostic sensitivity and specificity of WB. Overall, the new assay was characterized by low background values and a wide dynamic quantification range for the detection of antibodies to OspA, OspC and OspF antigens of B. burgdorferi. The diagnostic sensitivity and specificity for the OspA bead-based assay were calculated as 49% and 85%, respectively, and by a standard ROC curve analysis only because the Bayesian model could not be run on this parameter. The Bayesian-derived diagnostic sensitivities of the OspC and OspF assays were 80% and 86%, respectively. For comparison, the Bayesian-derived estimates for WB resulted in sensitivities of 72% for OspC and 80% for OspF. The Bayesian diagnostic specificities of the multiplex assay were 79% and 69% for OspC and OspF, respectively. WB analysis had specificities of 92% for OspC and 77% for OspF. Although the analysis of a new assay in the absence of a true gold standard remains challenging, the approach used here can help to address this problem when new technologies and traditionally used test standards differ significantly in their analytical sensitivities, which consequently causes problems in the calculation of diagnostic sensitivity and sensitivity values for the new assay. In summary, the new multiplex assay for the detection of antibodies to B. burgdorferi OspA, OspC and OspF antigens in horse serum has improved analytical and diagnostic sensitivities compared to WB analysis. Multiplex analysis is a valuable quantitative tool that simultaneously detects antibodies indicative for natural infection with and/or vaccination against the Lyme pathogen.


Subject(s)
Antibodies, Bacterial/immunology , Borrelia burgdorferi/immunology , Horse Diseases/immunology , Immunoassay/veterinary , Lyme Disease/veterinary , Animals , Antigens, Bacterial/immunology , Antigens, Surface/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Bayes Theorem , Data Interpretation, Statistical , Fluorescence , Horse Diseases/diagnosis , Horses/immunology , Immunoassay/methods , Likelihood Functions , Lipoproteins/immunology , Lyme Disease/diagnosis , Lyme Disease/immunology , Microspheres , ROC Curve , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...