Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617240

ABSTRACT

Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T-cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28 activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3+ CAR Tregs uniquely acquiring CD40L surface expression and producing IFNγ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.

2.
bioRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352443

ABSTRACT

Genetically engineered mouse models (GEMM) have fundamentally changed how ovarian cancer etiology, early detection, and treatment is understood. However, previous GEMMs of high-grade serous ovarian cancer (HGSOC) have had to utilize genetics rarely or never found in human HGSOC to yield ovarian cancer within the lifespan of a mouse. MYC, an oncogene, is amongst the most amplified genes in HGSOC, but it has not previously been utilized to drive HGSOC GEMMs. We coupled Myc and dominant negative mutant p53-R270H with a fallopian tube epithelium-specific promoter Ovgp1 to generate a new GEMM of HGSOC. Female mice developed lethal cancer at an average of 15.1 months. Histopathological examination of mice revealed HGSOC characteristics including nuclear p53 and nuclear MYC in clusters of cells within the fallopian tube epithelium and ovarian surface epithelium. Unexpectedly, nuclear p53 and MYC clustered cell expression was also identified in the uterine luminal epithelium, possibly from intraepithelial metastasis from the fallopian tube epithelium (FTE). Extracted tumor cells exhibited strong loss of heterozygosity at the p53 locus, leaving the mutant allele. Copy number alterations in these cancer cells were prevalent, disrupting a large fraction of genes. Transcriptome profiles most closely matched human HGSOC and serous endometrial cancer. Taken together, these results demonstrate the Myc and Trp53-R270H transgene was able to recapitulate many phenotypic hallmarks of HGSOC through the utilization of strictly human-mimetic genetic hallmarks of HGSOC. This new mouse model enables further exploration of ovarian cancer pathogenesis, particularly in the 50% of HGSOC which lack homology directed repair mutations. Histological and transcriptomic findings are consistent with the hypothesis that uterine serous cancer may originate from the fallopian tube epithelium.

3.
J Mol Cell Cardiol ; 186: 16-30, 2024 01.
Article in English | MEDLINE | ID: mdl-37935281

ABSTRACT

Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.


Subject(s)
Heart Valve Diseases , Mitral Valve , Humans , Mice , Animals , Mitral Valve/metabolism , Heart Valve Diseases/pathology , Heart Ventricles/metabolism , Myocardium/metabolism , Mice, Knockout , Transcription Factors/metabolism
4.
Cell Death Differ ; 30(5): 1305-1319, 2023 05.
Article in English | MEDLINE | ID: mdl-36864125

ABSTRACT

Centrosome amplification (CA) is a hallmark of cancer that is strongly associated with highly aggressive disease and worse clinical outcome. Clustering extra centrosomes is a major coping mechanism required for faithful mitosis of cancer cells with CA that would otherwise undergo mitotic catastrophe and cell death. However, its underlying molecular mechanisms have not been fully described. Furthermore, little is known about the processes and players triggering aggressiveness of cells with CA beyond mitosis. Here, we identified Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) to be overexpressed in tumors with CA, and its high expression is associated with dramatically worse clinical outcome. We demonstrated, for the first time, that TACC3 forms distinct functional interactomes regulating different processes in mitosis and interphase to ensure proliferation and survival of cancer cells with CA. Mitotic TACC3 interacts with the Kinesin Family Member C1 (KIFC1) to cluster extra centrosomes for mitotic progression, and inhibition of this interaction leads to mitotic cell death via multipolar spindle formation. Interphase TACC3 interacts with the nucleosome remodeling and deacetylase (NuRD) complex (HDAC2 and MBD2) in nucleus to inhibit the expression of key tumor suppressors (e.g., p21, p16 and APAF1) driving G1/S progression, and its inhibition blocks these interactions and causes p53-independent G1 arrest and apoptosis. Notably, inducing CA by p53 loss/mutation increases the expression of TACC3 and KIFC1 via FOXM1 and renders cancer cells highly sensitive to TACC3 inhibition. Targeting TACC3 by guide RNAs or small molecule inhibitors strongly inhibits growth of organoids and breast cancer cell line- and patient-derived xenografts with CA by induction of multipolar spindles, mitotic and G1 arrest. Altogether, our results show that TACC3 is a multifunctional driver of highly aggressive breast tumors with CA and that targeting TACC3 is a promising approach to tackle this disease.


Subject(s)
Breast Neoplasms , Spindle Apparatus , Humans , Female , Spindle Apparatus/metabolism , Microtubule-Associated Proteins/metabolism , Breast Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism , Centrosome/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism
5.
J Neurosci ; 42(42): 8002-8018, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36180228

ABSTRACT

Dysfunction of the peripheral auditory nerve (AN) contributes to dynamic changes throughout the central auditory system, resulting in abnormal auditory processing, including hypersensitivity. Altered sound sensitivity is frequently observed in autism spectrum disorder (ASD), suggesting that AN deficits and changes in auditory information processing may contribute to ASD-associated symptoms, including social communication deficits and hyperacusis. The MEF2C transcription factor is associated with risk for several neurodevelopmental disorders, and mutations or deletions of MEF2C produce a haploinsufficiency syndrome characterized by ASD, language, and cognitive deficits. A mouse model of this syndromic ASD (Mef2c-Het) recapitulates many of the MEF2C haploinsufficiency syndrome-linked behaviors, including communication deficits. We show here that Mef2c-Het mice of both sexes exhibit functional impairment of the peripheral AN and a modest reduction in hearing sensitivity. We find that MEF2C is expressed during development in multiple AN and cochlear cell types; and in Mef2c-Het mice, we observe multiple cellular and molecular alterations associated with the AN, including abnormal myelination, neuronal degeneration, neuronal mitochondria dysfunction, and increased macrophage activation and cochlear inflammation. These results reveal the importance of MEF2C function in inner ear development and function and the engagement of immune cells and other non-neuronal cells, which suggests that microglia/macrophages and other non-neuronal cells might contribute, directly or indirectly, to AN dysfunction and ASD-related phenotypes. Finally, our study establishes a comprehensive approach for characterizing AN function at the physiological, cellular, and molecular levels in mice, which can be applied to animal models with a wide range of human auditory processing impairments.SIGNIFICANCE STATEMENT This is the first report of peripheral auditory nerve (AN) impairment in a mouse model of human MEF2C haploinsufficiency syndrome that has well-characterized ASD-related behaviors, including communication deficits, hyperactivity, repetitive behavior, and social deficits. We identify multiple underlying cellular, subcellular, and molecular abnormalities that may contribute to peripheral AN impairment. Our findings also highlight the important roles of immune cells (e.g., cochlear macrophages) and other non-neuronal elements (e.g., glial cells and cells in the stria vascularis) in auditory impairment in ASD. The methodological significance of the study is the establishment of a comprehensive approach for evaluating peripheral AN function and impact of peripheral AN deficits with minimal hearing loss.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Male , Female , Mice , Animals , Humans , Autistic Disorder/complications , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , MEF2 Transcription Factors/genetics , Cochlear Nerve , Disease Models, Animal
6.
Life Sci Alliance ; 5(11)2022 11.
Article in English | MEDLINE | ID: mdl-35803738

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is associated with an incredibly dense stroma, which contributes to its recalcitrance to therapy. Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types within the PDAC stroma and have context-dependent regulation of tumor progression in the tumor microenvironment (TME). Therefore, understanding tumor-promoting pathways in CAFs is essential for developing better stromal targeting therapies. Here, we show that disruption of the STAT3 signaling axis via genetic ablation of Stat3 in stromal fibroblasts in a Kras G12D PDAC mouse model not only slows tumor progression and increases survival, but re-shapes the characteristic immune-suppressive TME by decreasing M2 macrophages (F480+CD206+) and increasing CD8+ T cells. Mechanistically, we show that loss of the tumor suppressor PTEN in pancreatic CAFs leads to an increase in STAT3 phosphorylation. In addition, increased STAT3 phosphorylation in pancreatic CAFs promotes secretion of CXCL1. Inhibition of CXCL1 signaling inhibits M2 polarization in vitro. The results provide a potential mechanism by which CAFs promote an immune-suppressive TME and promote tumor progression in a spontaneous model of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Fibroblasts/metabolism , Mice , Pancreatic Neoplasms/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
7.
Cell Rep Med ; 2(10): 100411, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34755131

ABSTRACT

Neoadjuvant PD-1 blockade may be efficacious in some individuals with high-risk, resectable oral cavity head and neck cancer. To explore correlates of response patterns to neoadjuvant nivolumab treatment and post-surgical recurrences, we analyzed longitudinal tumor and blood samples in a cohort of 12 individuals displaying 33% responsiveness. Pretreatment tumor-based detection of FLT4 mutations and PTEN signature enrichment favors response, and high tumor mutational burden improves recurrence-free survival. In contrast, preexisting and/or acquired mutations (in CDKN2A, YAP1, or JAK2) correlate with innate resistance and/or tumor recurrence. Immunologically, tumor response after therapy entails T cell receptor repertoire diversification in peripheral blood and intratumoral expansion of preexisting T cell clones. A high ratio of regulatory T to T helper 17 cells in pretreatment blood predicts low T cell receptor repertoire diversity in pretreatment blood, a low cytolytic T cell signature in pretreatment tumors, and innate resistance. Our study provides a molecular framework to advance neoadjuvant anti-PD-1 therapy for individuals with resectable head and neck cancer.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Mouth Neoplasms/drug therapy , Neoplasm Recurrence, Local/drug therapy , Nivolumab/therapeutic use , Programmed Cell Death 1 Receptor/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/surgery , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/immunology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immune Checkpoint Inhibitors/therapeutic use , Janus Kinase 2/genetics , Janus Kinase 2/immunology , Mouth Neoplasms/genetics , Mouth Neoplasms/immunology , Mouth Neoplasms/surgery , Mutation , Neoadjuvant Therapy/methods , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/surgery , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Survival Analysis , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/pathology , Treatment Outcome , Vascular Endothelial Growth Factor Receptor-3/immunology , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/immunology
8.
Cell Rep Med ; 2(10): 100426, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34755137

ABSTRACT

Oral cavity squamous cell carcinoma (OCSCC) is a prevalent surgically treated subset of head and neck cancer with frequent recurrence and poor survival. Immunotherapy has demonstrated efficacy in recurrent/metastatic head and neck cancer. However, whether antitumor responses could be fostered by neoadjuvant presurgical immunotherapy remains unclear. Using a Simon's two-stage design, we present results of a single-arm phase-II trial where 12 patients with stage II-IVA OCSCC received 3 to 4 biweekly doses of 3 mg/kg nivolumab followed by definitive surgical resection with curative intent. Presurgical nivolumab therapy in this cohort shows an overall response rate of 33% (n = 4 patients; 95% CI: 12%-53%). With a median follow up of 2.23 years, 10 out of 12 treated patients remain alive. Neoadjuvant nivolumab is safe, well-tolerated, and is not associated with delays in definitive surgical treatment in this study. This work demonstrates feasibility and safety for incorporation of nivolumab in the neoadjuvant setting for OCSCC (ClinicalTrials.gov: NCT03021993).


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Mouth Neoplasms/drug therapy , Neoplasm Recurrence, Local/drug therapy , Nivolumab/therapeutic use , Programmed Cell Death 1 Receptor/genetics , Aged , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/surgery , Cohort Studies , Female , Gene Expression Regulation, Neoplastic , Humans , Immune Checkpoint Inhibitors/therapeutic use , Male , Middle Aged , Mouth Neoplasms/immunology , Mouth Neoplasms/mortality , Mouth Neoplasms/surgery , Neoadjuvant Therapy/methods , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/surgery , Neoplasm Staging , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Survival Analysis , Treatment Outcome
9.
Oncoimmunology ; 10(1): 1959101, 2021.
Article in English | MEDLINE | ID: mdl-34408920

ABSTRACT

Adoptive transfer of tumor-infiltrating lymphocytes (TIL) elicits the regression of metastatic malignancies, yet a low proportion of patients achieve complete durable responses. The high incidence of relapse in these patients highlights the need to better understand mechanisms of tumor escape from T cell control. While melanoma has provided the foundation for developing TIL therapy, much less is known about TIL efficacy and relapse in other malignancies. We sought to investigate TIL characteristics in mouse tumors which have not been studied in this setting. Here, we expanded murine TIL ex vivo in IL-2 from fragments of multiple tumor models, including oral cavity cancer models of varying immunogenicity. Additionally, TIL was expanded from pmel-1 mice bearing B16F10 melanoma, yielding an enriched population of tumor-infiltrating TCR transgenic T cells. Murine TIL are similar to human TIL in that they express high levels of inhibitory receptors (PD-1, Tim-3, etc.) and can be expanded ex vivo in IL-2 extensively. Of clinical relevance, we draw parallels between murine and human oral cavity cancer TIL, evaluating relationships between inhibitory receptor expression and function. This platform can be used by labs even in the absence of clinical specimens or clean cell facilities and will be important to more broadly understand TIL phenotypes across many different malignancies.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Melanoma , Animals , Humans , Immunotherapy, Adoptive , Lymphocytes , Mice , Neoplasm Recurrence, Local
11.
J Allergy Clin Immunol ; 133(4): 952-60, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24084078

ABSTRACT

The cytokines IL-4, IL-13, and thymic stromal lymphopoietin play a key role in allergic disease by virtue of their ability to initiate, maintain, and augment TH2 responses. These molecules mediate their effects through type 1 cytokine receptors, which bind cytokines with a characteristic structure. Receptors are expressed on a broad array of immune cell types and are integral to complex cytokine networks operating in health and disease. TH2-promoting cytokines bind different configurations of receptors. Receptor subunits can exist in surface-bound or soluble forms, as well as in isolation or in partnership with other subunits. Sharing of receptor subunits among different cytokine receptor complexes adds to the intricate landscape. This article describes the characteristics of receptors for IL-4, IL-13, and thymic stromal lymphopoietin and their respective ligands from a structure-function perspective. We detail the mechanisms of receptor complex assembly, the interrelated nature of these receptors, and the effect on allergic inflammation. The ability for novel and atypical types of receptors to modulate inflammatory processes is also discussed. We highlight current and emerging treatments that target TH2-promoting receptor complexes. Understanding the molecular features of these receptors provides insight into different disease phenotypes and the variable clinical outcomes arising from targeted therapies. These considerations can be used to inform future directions for research and creative strategies for treating individual patients.


Subject(s)
Hypersensitivity/immunology , Hypersensitivity/metabolism , Receptors, Cytokine/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Animals , Cytokines/chemistry , Cytokines/metabolism , Humans , Protein Binding , Protein Interaction Maps , Receptors, Cytokine/chemistry , Signal Transduction
12.
J Alzheimers Dis ; 26(3): 531-41, 2011.
Article in English | MEDLINE | ID: mdl-21694458

ABSTRACT

Tau measurements in cerebrospinal fluid (CSF) are gaining acceptance as aids to diagnosis of Alzheimer's disease (AD) and differentiation from other dementias. Two ELISA assays, the INNOTEST® hTAU Ag and the INNOTEST® PHOSPHO-TAU(181P) for quantification of t-tau and p-tau181 respectively, have been validated to regulatory standards. Validation parameters were determined by repeated testing of human CSF pools. Specimens from Phase 2 studies of the γ-secretase inhibitor semagacestat and the therapeutic antibody solanezumab at baseline and following 12-14 weeks of treatment were also tested. Estimated intra-assay CV for repeated testing of 3 CSF pools were ≤11.5% and RE varied between -14.1% and +6.4%. Inter-assay CV for t-tau was <5% and RE was within ±8%. For p-tau181, inter-assay CV was <9% and RE was within ±2.5%. Total CV (intra-assay plus inter-assay) were below 10% for both analytes. Up to 20-fold dilutional linearity was demonstrated for both analytes. Stability of t-tau and p-tau181 was demonstrated in CSF during five freeze-thaw cycles at ≤-20 °C and ≤-70 °C and at 18-22 °C for up to 24 h. Neither semagacestat nor solanezumab interfered with either assay. Inter-individual t-tau and p-tau181 concentrations were highly variable but intra-individual variations were small. These assays are suitable for analysis of CSF t-tau and p-tau181 in a single laboratory supporting multi-center AD clinical trials. No effect of treatment with semagacestat or solanezumab was observed in response to three months of drug administration.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Aged , Alanine/analogs & derivatives , Alanine/therapeutic use , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal, Humanized/therapeutic use , Azepines/therapeutic use , Calibration , Clinical Trials, Phase II as Topic/methods , Enzyme-Linked Immunosorbent Assay , Humans , Phosphorylation , Protease Inhibitors/therapeutic use , Reproducibility of Results , Specimen Handling
13.
J Biol Chem ; 286(17): 14991-5002, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21343308

ABSTRACT

Cell surface proteoglycans on T cells contribute to retroviral infection, binding of chemokines and other proteins, and are necessary for some T cell responses to the matricellular glycoprotein thrombospondin-1. The major cell surface proteoglycans expressed by primary T cells and Jurkat T cells have an apparent M(r) > 200,000 and are modified with chondroitin sulfate and heparan sulfate chains. Thrombospondin-1 bound in a heparin-inhibitable manner to this proteoglycan and to a soluble form released into the medium. Based on mass spectrometry, knockdown, and immunochemical analyses, the proteoglycan contains two major core proteins as follows: amyloid precursor-like protein-2 (APLP2, apparent M(r) 230,000) and CD47 (apparent M(r) > 250,000). CD47 is a known thrombospondin-1 receptor but was not previously reported to be a proteoglycan. This proteoglycan isoform of CD47 is widely expressed on vascular cells. Mutagenesis identified glycosaminoglycan modification of CD47 at Ser(64) and Ser(79). Inhibition of T cell receptor signaling by thrombospondin-1 was lost in CD47-deficient T cells that express the proteoglycan isoform of APLP2, indicating that binding to APLP2 is not sufficient. Inhibition of CD69 induction was restored in CD47-deficient cells by re-expressing CD47 or an S79A mutant but not by the S64A mutant. Therefore, inhibition of T cell receptor signaling by thrombospondin-1 is mediated by CD47 and requires its modification at Ser(64).


Subject(s)
CD47 Antigen/metabolism , Heparitin Sulfate/metabolism , Receptors, Antigen, T-Cell/antagonists & inhibitors , Signal Transduction , Thrombospondin 1/physiology , Amyloid beta-Protein Precursor , Endothelial Cells , Humans , Jurkat Cells , Nerve Tissue Proteins , Serine/metabolism
14.
Ann Surg ; 247(5): 860-8, 2008 May.
Article in English | MEDLINE | ID: mdl-18438125

ABSTRACT

BACKGROUND: Insufficient tissue perfusion underlies many acute and chronic diseases. Tissue perfusion in turn requires adequate blood flow, determined in large part by the relative state of relaxation or constriction of arterial vessels. Nitric oxide (NO) produced by vascular cells modulates blood flow and tissue perfusion by relaxing and dilating arteries. Recently, we reported that the secreted protein thrombospondin-1 (TSP1), through its cell surface receptor CD47, limits the ability of NO to relax and dilate blood vessels and thus decreases tissue perfusion. In the present study, we tested the hypothesis that blocking TSP1-CD47 signaling increases ischemic tissue survival in random cutaneous porcine flaps. METHODS: Random cutaneous flaps 2 x 10 cm2 were raised in white hairless Yucatan miniature pigs and were treated with a monoclonal antibody to TSP1, an antisense morpholino oligonucleotide to CD47 or control agents and tissue survival assessed. Primary vascular smooth muscle cell cultured from Yucatan pigs were also treated with the same agents +/- and an NO donor (DEA/NO) and cGMP quantified. RESULTS: Antibody blockade of TSP1 or morpholino suppression of CD47 dramatically enhanced survival of random tissue flaps. These responses correlated with increased blood vessel patency and tissue blood flow on vessel injection studies. NO-stimulated cGMP flux in Yucatan vascular smooth muscle cell was abrogated after antibody or morpholino treatment. CONCLUSION: Antibody ligation of TSP1 or antisense morpholino knock down of CD47 greatly increased tissue survival to ischemia. Given the similarity between porcine and human soft tissues these results suggest significant therapeutic potential for people.


Subject(s)
Antibodies, Monoclonal/pharmacology , CD47 Antigen/metabolism , Gene Silencing , Surgical Flaps/blood supply , Thrombospondin 1/antagonists & inhibitors , Tissue Survival/drug effects , Animals , CD47 Antigen/drug effects , CD47 Antigen/genetics , Ischemia , Oligodeoxyribonucleotides, Antisense/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Swine , Swine, Miniature , Tissue Culture Techniques , Tissue Survival/physiology
15.
Blood ; 111(2): 613-23, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17890448

ABSTRACT

Platelet alpha-granules constitute the major rapidly releasable reservoir of thrombospondin-1 in higher animals. Although some fragments and peptides derived from thrombospondin-1 stimulate or inhibit platelet aggregation, its physiologic function in platelets has remained elusive. We now show that endogenous thrombospondin-1 is necessary for platelet aggregation in vitro in the presence of physiologic levels of nitric oxide (NO). Exogenous NO or elevation of cGMP delays thrombin-induced platelet aggregation under high shear and static conditions, and exogenous thrombospondin-1 reverses this delay. Thrombospondin-1-null murine platelets fail to aggregate in response to thrombin in the presence of exogenous NO or 8Br-cGMP. At physiologic concentrations of the NO synthase substrate arginine, thrombospondin-1-null platelets have elevated basal cGMP. Ligation of CD36 or CD47 is sufficient to block NO-induced cGMP accumulation and mimic the effect of thrombospondin-1 on aggregation. Exogenous thrombospondin-1 also reverses the suppression by NO of alphaIIb/beta3 integrin-mediated platelet adhesion on immobilized fibrinogen, mediated in part by increased GTP loading of Rap1. Thrombospondin-1 also inhibits cGMP-mediated activation of cGMP-dependent protein kinase and thereby prevents phosphorylation of VASP. Thus, release of thrombospondin-1 from alpha-granules during activation provides positive feedback to promote efficient platelet aggregation and adhesion by overcoming the antithrombotic activity of physiologic NO.


Subject(s)
Blood Platelets/metabolism , Cyclic GMP/metabolism , Fibrinolytic Agents/metabolism , Nitric Oxide/metabolism , Platelet Aggregation/physiology , Thrombospondin 1/metabolism , Animals , Arginine/genetics , Arginine/metabolism , Blood Platelets/cytology , CD36 Antigens/genetics , CD36 Antigens/metabolism , CD47 Antigen/genetics , CD47 Antigen/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cyclic GMP/antagonists & inhibitors , Cyclic GMP/genetics , Cyclic GMP/pharmacology , Fibrinolytic Agents/pharmacology , Immunologic Capping/drug effects , Immunologic Capping/physiology , Mice , Mice, Knockout , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/genetics , Peptides/genetics , Peptides/metabolism , Peptides/pharmacology , Phosphoproteins/genetics , Phosphoproteins/metabolism , Platelet Adhesiveness/drug effects , Platelet Adhesiveness/genetics , Platelet Aggregation/drug effects , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Secretory Vesicles/genetics , Secretory Vesicles/metabolism , Shear Strength , Thrombin/genetics , Thrombin/metabolism , Thrombin/pharmacology , Thrombospondin 1/genetics , Thrombospondin 1/pharmacology , rap1 GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/metabolism
16.
Ann Surg ; 247(1): 180-90, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18156939

ABSTRACT

BACKGROUND: Skin graft survival and healing requires rapid restoration of blood flow to the avascular graft. Failure or delay in the process of graft vascularization is a significant source of morbidity and mortality. One of the primary regulators of blood flow and vessel growth is nitric oxide (NO). The secreted protein thrombospondin-1 (TSP1) limits NO-stimulated blood flow and growth and composite tissue survival to ischemia. We herein demonstrate a role for TSP1 in regulating full thickness skin graft (FTSG) survival. METHODS AND RESULTS: FTSG consistently fail in wild type C57BL/6 mice but survive in mice lacking TSP1 or its receptor CD47. Ablation of the TSP1 receptor CD36, however, did not improve FTSG survival. Remarkably, wild type FTSG survived on TSP1 null or CD47 null mice, indicating that TSP1 expression in the wound bed is the primary determinant of graft survival. FTSG survival in wild type mice could be moderately improved by increasing NO flux, but graft survival was increased significantly through antibody blocking of TSP1 binding to CD47 or antisense morpholino oligonucleotide suppression of CD47. CONCLUSIONS: TSP1 through CD47 limits skin graft survival. Blocking TSP1 binding or suppressing CD47 expression drastically increases graft survival. The therapeutic applications of this approach could include burn patients and the broader group of people requiring grafts or tissue flaps for closure and reconstruction of complex wounds of diverse etiologies.


Subject(s)
CD47 Antigen/metabolism , Skin Transplantation , Thrombospondin 1/metabolism , Analysis of Variance , Animals , Blood Flow Velocity , Blotting, Western , Cell Survival , Disease Models, Animal , Graft Survival , Laser-Doppler Flowmetry , Mice , Mice, Inbred C57BL , Mice, Knockout , Necrosis/prevention & control , Nitric Oxide/pharmacology
17.
Circ Res ; 100(5): 712-20, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17293482

ABSTRACT

Thrombospondin-1 (TSP1) limits the angiogenic and vasodilator activities of NO. This activity of TSP1 can be beneficial in some disease states, but endogenous TSP1 limits recovery of tissue perfusion following fixed ischemic injury in dorsal skin flaps in mice. Using mice lacking the TSP1 receptors CD36 or CD47, we now show that CD47 is the necessary receptor for limiting NO-mediated vascular smooth muscle relaxation and tissue survival following ischemic injury in skin flaps and hindlimbs. We further show that blocking CD47 or TSP1 using monoclonal antibodies and decreasing CD47 expression using an antisense morpholino oligonucleotide are effective therapeutic approaches to dramatically increase survival of soft tissue subjected to fixed ischemia. These treatments facilitate rapid vascular remodeling to restore tissue perfusion and increase skin and muscle viability. Thus, limiting CD47-dependent antagonism of NO-mediated vasodilation and vascular remodeling is a promising therapeutic modality to preserve tissues subject to ischemic stress.


Subject(s)
CD47 Antigen/metabolism , Drug Delivery Systems/trends , Ischemia/metabolism , Animals , Hindlimb/blood supply , Hindlimb/drug effects , Hindlimb/metabolism , Humans , Ischemia/drug therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Pharmaceutical Preparations/administration & dosage , Signal Transduction/drug effects , Signal Transduction/physiology , Vasodilation/drug effects , Vasodilation/physiology
18.
Blood ; 109(5): 1945-52, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17082319

ABSTRACT

The nitric oxide (NO)/cGMP pathway, by relaxing vascular smooth muscle cells, is a major physiologic regulator of tissue perfusion. We now identify thrombospondin-1 as a potent antagonist of NO for regulating F-actin assembly and myosin light chain phosphorylation in vascular smooth muscle cells. Thrombospondin-1 prevents NO-mediated relaxation of precontracted vascular smooth muscle cells in a collagen matrix. Functional magnetic resonance imaging demonstrated that an NO-mediated increase in skeletal muscle perfusion was enhanced in thrombospondin-1-null relative to wild-type mice, implicating endogenous thrombospondin-1 as a physiologic antagonist of NO-mediated vasodilation. Using a random myocutaneous flap model for ischemic injury, tissue survival was significantly enhanced in thrombospondin-1-null mice. Improved flap survival correlated with increased recovery of oxygen levels in the ischemic tissue of thrombospondin-1-null mice as measured by electron paramagnetic resonance oximetry. These findings demonstrate an important antagonistic relation between NO/cGMP signaling and thrombospondin-1 in vascular smooth muscle cells to regulate vascular tone and tissue perfusion.


Subject(s)
Ischemia/metabolism , Ischemia/pathology , Muscle Relaxation , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Nitric Oxide/metabolism , Thrombospondin 1/metabolism , Actins/metabolism , Animals , Cardiac Myosins/metabolism , Ischemia/genetics , Ischemia/surgery , Mice , Mice, Inbred C57BL , Muscle Relaxation/genetics , Myosin Light Chains/metabolism , Necrosis/enzymology , Necrosis/pathology , Nitric Oxide Synthase/metabolism , Oxygen/metabolism , Phosphorylation , Thrombospondin 1/deficiency , Thrombospondin 1/genetics
19.
Cancer ; 106(12): 2716-24, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16691626

ABSTRACT

BACKGROUND: Based on in vitro studies, Rho guanine nucleotide exchange factors (RhoGEFs) are key regulators of mitogenic and transforming pathways. At least 1 family member, PDZ-RhoGEF, also integrates signaling between monomeric Rho G proteins and heterotrimeric G proteins through a so-called regulator of G-protein signaling (RGS) domain. Recently, the authors reported that 3 single-nucleotide polymorphisms (SNPs) in 2 members of the RGS family were associated with significant reductions in the risk of cancer. METHODS: For the current report, the authors studied the risk of lung cancer associated with a nonsynonymous SNP (rs868188; Ser1416Gly) in PDZ-RhoGEF in a large lung cancer case-control study of 2260 Caucasians and 369 Mexican Americans. RESULTS: Compared with individuals who had the wild-type genotype (AA), Mexican Americans with the variant genotypes (AG and GG) had a significantly reduced risk for lung cancer (odds ratio [OR], 0.57; 95% confidence interval [95%CI], 0.34-0.94). The protective effect appeared to be more evident in younger individuals (OR, 0.42; 95%CI, 0.20-0.91), men (OR, 0.36; 95%CI, 0.18-0.71), and ever smokers (OR, 0.50; 95%CI, 0.29-0.88). A joint effect was observed between Ser1416Gly and polymorphisms in 2 cell-cycle control genes: p53 (intron 3) and cyclin D1 (CCND1). Tallying the variant alleles of the 4 RGS gene SNPs, a gene-dosage effect was apparent. Compared with individuals who had < 3 variant alleles, patients with > or = 3 variant alleles had a 51% reduction in lung cancer risk (OR, 0.49; 95%CI, 0.28-0.88). CONCLUSIONS: To the authors' knowledge, this is the first epidemiological study to link PDZ-RhoGEF polymorphisms with cancer risk. The results suggest that there are interactions between RGS2, RGS6, and PDZ-RhoGEF and validate this family of proteins as key regulators of tumorigenesis.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Lung Neoplasms/genetics , Mexican Americans/genetics , Polymorphism, Single Nucleotide/genetics , Aged , Alleles , Case-Control Studies , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cyclin D1/genetics , Cyclin D1/physiology , DNA, Neoplasm/analysis , DNA, Neoplasm/genetics , Female , GTP-Binding Proteins/physiology , Genotype , Glycine/analysis , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/physiology , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/ethnology , Male , Middle Aged , Odds Ratio , Rho Guanine Nucleotide Exchange Factors , Risk Factors , Serine/analysis , Signal Transduction/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/physiology
20.
Clin Cancer Res ; 12(8): 2463-7, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16638853

ABSTRACT

PURPOSE: There is a need for new technologies to study tissue-based biomarkers. The current gold standard, immunohistochemistry, is compromised by variability in tissue processing and observer bias. Reverse transcription-PCR (RT-PCR), immunocytochemistry, and reverse-phase lysate microarrays (RPM) are promising alternative technologies but have not yet been validated, or correlated, on the same patient-derived tissues. Furthermore, RPM is currently limited by time-consuming microdissection and low amounts of evaluable protein lysates. EXPERIMENTAL DESIGN: Metastatic melanoma was surgically excised from 30 patients and macroscopically dissected from surrounding stroma. Each specimen was processed by formalin-fixation (immunohistochemistry), cytospin (immunocytochemistry), or disaggreagation and enrichment (RT-PCR and RPM). The latter protocol uses immunochromatography to remove hematopoetic-derived cells, thus enriching for melanoma cells. Each sample was measured for the expression of gp100 or MART-1 normalized to actin. RESULTS: Immunochromatography coupled with RPM (I-RPM) is reproducible (r >/= 0.70) and, for gp100, correlates strongly with immunohistochemistry and immunocytochemistry (r = 0.78 and 0.76, respectively) and moderately with transcript levels, measured by RT-PCR (r = 0.61). In contrast, for MART-1, I-RPM correlates strongly with transcript level (r = 0.78) but only moderately strong correlations are noted with immunohistochemistry and immunocytochemistry (r = 0.64 and 0.59, respectively). In general, transcript levels show only moderately strong correlations with immunohistochemistry and immunocytochemistry (r = 0.41-0.64). CONCLUSION: I-RPM is a promising technology for quantitative grading of tissue biomarkers; however, antigen-dependent correlations are noted.


Subject(s)
Biomarkers, Tumor/analysis , Cell-Free System/chemistry , Neoplasms/metabolism , Antigens, Neoplasm/analysis , Antigens, Neoplasm/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry/methods , MART-1 Antigen , Melanoma/genetics , Melanoma/metabolism , Membrane Glycoproteins/analysis , Membrane Glycoproteins/genetics , Neoplasm Proteins/analysis , Neoplasm Proteins/genetics , Neoplasms/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , gp100 Melanoma Antigen
SELECTION OF CITATIONS
SEARCH DETAIL