Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
ACS Infect Dis ; 10(4): 1391-1404, 2024 04 12.
Article En | MEDLINE | ID: mdl-38485491

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death worldwide by infectious disease. Treatment of Mtb infection requires a six-month course of multiple antibiotics, an extremely challenging regimen necessitated by Mtb's ability to form drug-tolerant persister cells. Mtb persister formation is dependent on the trehalose catalytic shift, a stress-responsive metabolic remodeling mechanism in which the disaccharide trehalose is liberated from cell surface glycolipids and repurposed as an internal carbon source to meet energy and redox demands. Here, using a biofilm-persister model, metabolomics, and cryo-electron microscopy (EM), we found that azidodeoxy- and aminodeoxy-d-trehalose analogues block the Mtb trehalose catalytic shift through inhibition of trehalose synthase TreS (Rv0126), which catalyzes the isomerization of trehalose to maltose. Out of a focused eight-member compound panel constructed by chemoenzymatic synthesis, the natural product 2-trehalosamine exhibited the highest potency and significantly potentiated first- and second-line TB drugs in broth culture and macrophage infection assays. We also report the first structure of TreS bound to a substrate analogue inhibitor, obtained via cryo-EM, which revealed conformational changes likely essential for catalysis and inhibitor binding that can potentially be exploited for future therapeutic development. Our results demonstrate that inhibition of the trehalose catalytic shift is a viable strategy to target Mtb persisters and advance trehalose analogues as tools and potential adjunctive therapeutics for investigating and targeting mycobacterial persistence.


Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Trehalose/chemistry , Trehalose/metabolism , Cryoelectron Microscopy , Tuberculosis/microbiology , Catalysis
2.
bioRxiv ; 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38293037

Weak organic acids are commonly found in host niches colonized by bacteria, and they can inhibit bacterial growth as the environment becomes acidic. This inhibition is often attributed to the toxicity resulting from the accumulation of high concentrations of organic anions in the cytosol, which disrupts cellular homeostasis. However, the precise cellular targets that organic anions poison and the mechanisms used to counter organic anion intoxication in bacteria have not been elucidated. Here, we utilize acetic acid, a weak organic acid abundantly found in the gut to investigate its impact on the growth of Staphylococcus aureus. We demonstrate that acetate anions bind to and inhibit d-alanyl-d-alanine ligase (Ddl) activity in S. aureus. Ddl inhibition reduces intracellular d-alanyl-d-alanine (d-Ala-d-Ala) levels, compromising staphylococcal peptidoglycan cross-linking and cell wall integrity. To overcome the effects of acetate-mediated Ddl inhibition, S. aureus maintains a high intracellular d-Ala pool through alanine racemase (Alr1) activity and additionally limits the flux of d-Ala to d-glutamate by controlling d-alanine aminotransferase (Dat) activity. Surprisingly, the modus operandi of acetate intoxication in S. aureus is common to multiple biologically relevant weak organic acids indicating that Ddl is a conserved target of small organic anions. These findings suggest that S. aureus may have evolved to maintain high intracellular d-Ala concentrations, partly to counter organic anion intoxication.

3.
Chem Commun (Camb) ; 59(93): 13859-13862, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37929833

The outer mycomembrane of Mycobacterium tuberculosis and related pathogens is a robust permeability barrier that protects against antibiotic treatment. Here, we demonstrate that synthetic analogues of the mycomembrane biosynthetic precursor trehalose monomycolate bearing truncated lipid chains increase permeability of Mycobacterium smegmatis cells and sensitize them to treatment with the first-line anti-tubercular drug rifampicin. The reported strategy may be useful for enhancing entry of drugs and other molecules to mycobacterial cells, and represents a new way to study mycomembrane structure and function.


Mycobacterium tuberculosis , Rifampin , Rifampin/pharmacology , Cell Membrane/chemistry , Cell Wall , Mycobacterium tuberculosis/chemistry , Lipids/analysis
4.
RSC Med Chem ; 14(5): 921-933, 2023 May 25.
Article En | MEDLINE | ID: mdl-37252106

As an adaptation for survival during infection, Mycobacterium tuberculosis becomes dormant, reducing its metabolism and growth. Two types of citrate synthases have been identified in Mycobacterium tuberculosis, GltA2 and CitA. Previous work shows that overexpression of CitA, the secondary citrate synthase, stimulates the growth of Mycobacterium tuberculosis under hypoxic conditions without showing accumulation of triacylglycerols and makes mycobacteria more sensitive to antibiotics, suggesting that CitA may play a role as a metabolic switch during infection and may be an interesting TB drug target. To assess the druggability and possible mechanisms of targeting CitA with small-molecule compounds, the CitA crystal structure was solved to 2.1 Å by X-ray crystallography. The solved structure shows that CitA lacks an NADH binding site that would afford allosteric regulation, which is atypical of most citrate synthases. However, a pyruvate molecule is observed within the analogous domain, suggesting pyruvate may instead be the allosteric regulator for CitA. The R149 and R153 residues forming the charged portion of the pyruvate binding pocket were mutated to glutamate and methionine, respectively, to assess the effect of mutations on activity. Protein thermal shift assay shows thermal stabilization of CitA in the presence of pyruvate compared to the two CitA variants designed to decrease pyruvate affinity. Solved crystal structures of both variants show no significant structural changes. However, the catalytic efficiency of the R153M variant increases by 2.6-fold. Additionally, we show that covalent modification of C143 of CitA by Ebselen completely arrests enzyme activity. Similar inhibition is observed using two spirocyclic Michael acceptor containing compounds, which inhibit CitA with ICapp50 values of 6.6 and 10.9 µM. A crystal structure of CitA modified by Ebselen was solved, but significant structural changes were lacking. Considering that covalent modification of C143 inactivates CitA and the proximity of C143 to the pyruvate binding site, this suggests that structural and/or chemical changes in this sub-domain are responsible for regulating CitA enzymatic activity.

5.
RSC Med Chem ; 14(3): 491-500, 2023 Mar 22.
Article En | MEDLINE | ID: mdl-36970142

Mycothiol S-transferase (MST) (encoded by the rv0443 gene) was previously identified as the enzyme responsible for the transfer of Mycothiol (MSH) to xenobiotic acceptors in Mycobacterium tuberculosis (M.tb) during xenobiotic stress. To further characterize the functionality of MST in vitro and the possible roles in vivo, X-ray crystallographic, metal-dependent enzyme kinetics, thermal denaturation studies, and antibiotic MIC determination in rv0433 knockout strain were performed. The binding of MSH and Zn2+ increases the melting temperature by 12.9 °C as a consequence of the cooperative stabilization of MST by both MSH and metal. The co-crystal structure of MST in complex with MSH and Zn2+ to 1.45 Å resolution supports the specific utilization of MSH as a substrate as well as affording insights into the structural requirements of MSH binding and the metal-assisted catalytic mechanism of MST. Contrary to the well-defined role of MSH in mycobacterial xenobiotic responses and the ability of MST to bind MSH, cell-based studies with an M.tb rv0443 knockout strain failed to provide evidence for a role of MST in processing of rifampicin or isoniazid. These studies suggest the necessity of a new direction to identify acceptors of the enzyme and better define the biological role of MST in mycobacteria.

6.
ACS Infect Dis ; 9(3): 540-553, 2023 03 10.
Article En | MEDLINE | ID: mdl-36753622

Mycobacterium tuberculosis (Mtb) lacking functional homoserine transacetylase (HTA) is compromised in methionine biosynthesis, protein synthesis, and in the activity of multiple essential S-adenosyl-l-methionine-dependent enzymes. Additionally, deficient mutants are further disarmed by the toxic accumulation of lysine due to a redirection of the metabolic flux toward the lysine biosynthetic pathway. Studies with deletion mutants and crystallographic studies of the apoenzyme have, respectively, validated Mtb HTA as an essential enzyme and revealed a ligandable binding site. Seeking a mechanistic characterization of this enzyme, we report crucial structural details and comprehensive functional characterization of Mtb HTA. Crystallographic and mass spectral observation of the acetylated HTA intermediate and initial velocity studies were consistent with a ping-pong kinetic mechanism. Wild-type HTA and its site-directed mutants were kinetically characterized with a panel of natural and alternative substrates to understand substrate specificity and identify critical residues for catalysis. Titration experiments using fluorescence quenching showed that both substrates─acetyl-CoA and l-homoserine─engage in a strong and weak binding interaction with HTA. Additionally, substrate inhibition by acetyl-CoA and product inhibition by CoA and O-acetyl-l-homoserine were proposed to form the basis of a feedback regulation mechanism. By furnishing key mechanistic and structural information, these studies provide a foundation for structure-based design efforts around this attractive Mtb target.


Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Lysine , Acetyltransferases/chemistry , Methionine , Acetyl Coenzyme A
7.
J Control Release ; 354: 80-90, 2023 02.
Article En | MEDLINE | ID: mdl-36599397

Medulloblastoma (MB) is a malignant pediatric brain tumor which shows upregulation of MYC and sonic hedgehog (SHH) signaling. SHH inhibitors face acquired resistance, which is a major cause of relapse. Further, direct MYC oncogene inhibition is challenging, inhibition of MYC upstream insulin-like growth factor/ phosphatidylinositol-4,5-bisphosphate 3-kinase (IGF/PI3K) is a promising alternative. While PI3K inhibition activates resistance mechanisms, simultaneous inhibition of bromodomain-containing protein 4 (BRD4) and PI3K can overcome resistance. We synthesized a new molecule 8-(2,3-dihydrobenzo[b] [1, 4] dioxin-6-yl)-2-morpholino-4H-chromen-4-one (MDP5) that targets both BRD4 and PI3K pathways. We used X-ray crystal structures and a molecular modeling approach to confirm the interactions between MDP5 with bromo domains (BDs) from both BRD2 and BRD4, and molecular modeling for PI3K binding. MDP5 was shown to inhibit target pathways and MB cell growth in vitro and in vivo. MDP5 showed higher potency in DAOY cells (IC50 5.5 µM) compared to SF2523 (IC50 12.6 µM), and its IC50 values in HD-MB03 cells were like SF2523. Treatment of MB cells with MDP5 significantly decreased colony formation, increased apoptosis, and halted cell cycle progression. Further, MDP5 was well tolerated in NSG mice bearing either xenograft or orthotopic MB tumors at the dose of 20 mg/kg, and significantly reduced tumor growth and prolonged animal survival.


Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Humans , Mice , Animals , Transcription Factors , Nuclear Proteins , Phosphatidylinositol 3-Kinases/metabolism , Hedgehog Proteins , Signal Transduction , Cell Proliferation , Cell Line, Tumor , Cell Cycle Proteins
8.
Front Chem ; 10: 950433, 2022.
Article En | MEDLINE | ID: mdl-36157042

C7/C8-cyclitols and C7N-aminocyclitols find applications in the pharmaceutical sector as α-glucosidase inhibitors and in the agricultural sector as fungicides and insecticides. In this study, we identified C7/C8-cyclitols and C7N-aminocyclitols as potential inhibitors of Streptomyces coelicolor (Sco) GlgEI-V279S based on the docking scores. The protein and the ligand (targets 11, 12, and 13) were prepared, the states were generated at pH 7.0 ± 2.0, and the ligands were docked into the active sites of the receptor via Glide™. The synthetic route to these targets was similar to our previously reported route used to obtain 4-⍺-glucoside of valienamine (AGV), except the protecting group for target 12 was a p-bromobenzyl (PBB) ether to preserve the alkene upon deprotection. While compounds 11-13 did not inhibit Sco GlgEI-V279S at the concentrations evaluated, an X-ray crystal structure of the Sco GlgE1-V279S/13 complex was solved to a resolution of 2.73 Å. This structure allowed assessment differences and commonality with our previously reported inhibitors and was useful for identifying enzyme-compound interactions that may be important for future inhibitor development. The Asp 394 nucleophile formed a bidentate hydrogen bond interaction with the exocyclic oxygen atoms (C(3)-OH and C(7)-OH) similar to the observed interactions with the Sco GlgEI-V279S in a complex with AGV (PDB:7MGY). In addition, the data suggest replacing the cyclohexyl group with more isosteric and hydrogen bond-donating groups to increase binding interactions in the + 1 binding site.

9.
Sci Rep ; 11(1): 22240, 2021 11 15.
Article En | MEDLINE | ID: mdl-34782676

Ergothioneine (EGT) is a low molecular weight histidine betaine essential in all domains of life but only synthesized by selected few organisms. Synthesis of EGT by Mycobacterium tuberculosis (M. tb) is critical for maintaining bioenergetic homeostasis and protecting the bacterium from alkylating agents, oxidative stress, and anti-tubercular drugs. EgtD, an S-adenosylmethionine-dependent methyltransferase (AdoMet), catalyzes the trimethylation of L-Histidine to initiate EGT biosynthesis and this reaction has been shown to be essential for EGT production in mycobacteria and for long-term infection of murine macrophages by M. tb. In this work, library screening and structure-guided strategies identified multiple classes of M. tb EgtD inhibitors that bind in various regions of the enzyme active site. X-ray crystal structures of EgtD-inhibitor complexes confirm that L-Histidine analogs bind solely to the L-Histidine binding site while drug-like inhibitors, such as TGX-221, and S-Glycyl-H-1152 span both the L-Histidine and AdoMet binding sites. These enzyme-inhibitor complexes provide detailed structural information of compound scaffolds useful for developing more potent inhibitors that could shorten Tuberculosis treatment regimens by weakening important bacterial defenses.


Antitubercular Agents/chemistry , Betaine/analogs & derivatives , Binding Sites , Biosynthetic Pathways/drug effects , Ergothioneine/chemistry , Histidine/analogs & derivatives , Models, Molecular , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Betaine/chemistry , Betaine/metabolism , Dose-Response Relationship, Drug , Ergothioneine/biosynthesis , Histidine/chemistry , Histidine/metabolism , Histidine/pharmacology , Molecular Conformation , Molecular Structure , Mycobacterium tuberculosis/metabolism , Structure-Activity Relationship
10.
ACS Infect Dis ; 7(10): 2876-2888, 2021 10 08.
Article En | MEDLINE | ID: mdl-34478259

Tetrahydrolipstatin (THL, 1a) has been shown to inhibit both mammalian and bacterial α/ß hydrolases. In the case of bacterial systems, THL is a known inhibitor of several Mycobacterium tuberculosis hydrolases involved in mycomembrane biosynthesis. Herein we report a highly efficient eight-step asymmetric synthesis of THL using a route that allows modification of the THL α-chain substituent to afford compounds 1a through 1e. The key transformation in the synthesis was use of a (TPP)CrCl/Co2(CO)8-catalyzed regioselective and stereospecific carbonylation on an advanced epoxide intermediate to yield a trans-ß-lactone. These compounds are modest inhibitors of Ag85A and Ag85C, two α/ß hydrolases of M. tuberculosis involved in the biosynthesis of the mycomembrane. Among these compounds, 10d showed the highest inhibitory effect on Ag85A (34 ± 22 µM) and Ag85C (66 ± 8 µM), and its X-ray structure was solved in complex with Ag85C to 2.5 Å resolution. In contrast, compound 1e exhibited the best-in-class MICs of 50 µM (25 µg/mL) and 16 µM (8.4 µg/mL) against M. smegmatis and M. tuberculosis H37Ra, respectively, using a microtiter assay plate. Combination of 1e with 13 well-established antibiotics synergistically enhanced the potency of few of these antibiotics in M. smegmatis and M. tuberculosis H37Ra. Compound 1e applied at concentrations 4-fold lower than its MIC enhanced the MIC of the synergistic antibiotic by 2-256-fold. In addition to observing synergy with first-line drugs, rifamycin and isoniazid, the MIC of vancomycin against M. tuberculosis H37Ra was 65 µg/mL; however, the MIC was lowered to 0.25 µg/mL in the presence of 2.1 µg/mL 1e demonstrating the potential of targeting mycobacterial hydrolases involved in mycomembrane and peptidoglycan biosynthesis.


Mycobacterium tuberculosis , Animals , Antitubercular Agents/pharmacology , Isoniazid , Microbial Sensitivity Tests , Orlistat
12.
Sci Rep ; 11(1): 13413, 2021 06 28.
Article En | MEDLINE | ID: mdl-34183716

Glycoside hydrolases (GH) are a large family of hydrolytic enzymes found in all domains of life. As such, they control a plethora of normal and pathogenic biological functions. Thus, understanding selective inhibition of GH enzymes at the atomic level can lead to the identification of new classes of therapeutics. In these studies, we identified a 4-⍺-glucoside of valienamine (8) as an inhibitor of Streptomyces coelicolor (Sco) GlgE1-V279S which belongs to the GH13 Carbohydrate Active EnZyme family. The results obtained from the dose-response experiments show that 8 at a concentration of 1000 µM reduced the enzyme activity of Sco GlgE1-V279S by 65%. The synthetic route to 8 and a closely related 4-⍺-glucoside of validamine (7) was achieved starting from readily available D-maltose. A key step in the synthesis was a chelation-controlled addition of vinylmagnesium bromide to a maltose-derived enone intermediate. X-ray structures of both 7 and 8 in complex with Sco GlgE1-V279S were solved to resolutions of 1.75 and 1.83 Å, respectively. Structural analysis revealed the valienamine derivative 8 binds the enzyme in an E2 conformation for the cyclohexene fragment. Also, the cyclohexene fragment shows a new hydrogen-bonding contact from the pseudo-diaxial C(3)-OH to the catalytic nucleophile Asp 394 at the enzyme active site. Asp 394, in fact, forms a bidentate interaction with both the C(3)-OH and C(7)-OH of the inhibitor. In contrast, compound 7 disrupts the catalytic sidechain interaction network of Sco GlgE1-V279S via steric interactions resulting in a conformation change in Asp 394. These findings will have implications for the design other aminocarbasugar-based GH13-inhibitors and will be useful for identifying more potent and selective inhibitors.


Bacterial Proteins/antagonists & inhibitors , Cyclohexenes/chemical synthesis , Glucosides/chemical synthesis , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolases/chemistry , Hexosamines/chemical synthesis , Streptomyces coelicolor/enzymology , Amino Acid Substitution , Amino Acids/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carbohydrate Conformation , Catalytic Domain , Crystallography, X-Ray , Cyclohexenes/pharmacology , Glucosides/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolases/genetics , Hexosamines/pharmacology , Maltose/chemistry , Models, Molecular , Mutation, Missense , Nuclear Magnetic Resonance, Biomolecular , Point Mutation , Stereoisomerism , Streptomyces coelicolor/genetics
13.
ACS Infect Dis ; 6(5): 1169-1181, 2020 05 08.
Article En | MEDLINE | ID: mdl-32233506

EP67 is a second-generation, human C5a-derived decapeptide agonist of C5a receptor 1 (C5aR1/CD88) that selectively activates mononuclear phagocytes over neutrophils to potentiate protective innate and adaptive immune responses while potentially minimizing neutrophil-mediated toxicity. Pro7 and N-methyl-Leu8 (Me-Leu8) amino acid residues within EP67 likely induce backbone structural changes that increase potency and selective activation of mononuclear phagocytes over neutrophils versus first-generation EP54. The low coupling efficiency between Pro7 and Me-Leu8 and challenging purification by HPLC, however, greatly increase scale-up costs of EP67 for clinical use. Thus, the goal of this study was to determine whether replacing Pro7 and/or Me-Leu8 with large-scale amenable amino acid residues predicted to induce similar structural changes (cyclohexylalanine7 and/or leucine8) sufficiently preserves EP67 activity in primary human mononuclear phagocytes and neutrophils. We found that EP67 analogues had similar potency, efficacy, and selective activation of mononuclear phagocytes over neutrophils. Thus, replacing Pro7 and/or Me-Leu8 with large-scale amenable amino acid residues predicted to induce similar structural changes is a suitable strategy to overcome scale-up challenges with EP67.


Adjuvants, Immunologic/chemistry , Complement C5a , Oligopeptides/chemistry , Amino Acid Substitution , Humans
14.
Medchemcomm ; 10(7): 1197-1204, 2019 Jul 01.
Article En | MEDLINE | ID: mdl-31741730

A focused library of 24 N-aryl urea derivatives was prepared and evaluated against serine esterases of Mycobacterium tuberculosis (Mtb) Rv3802c and Mtb Ag85C. The members of the library were evaluated for both selectivity and mode of inhibition. Furan-based urea derivative 6c was found to be the most potent non-covalent inhibitor of Rv3802c with a K i value of 5.2 ± 0.7 µM. On the other hand, triazole-based ureas 10a and 10b selectively inhibited Ag85C irreversibly with a k inact/K i value of 2.3 ± 0.3 and 5.5 ± 0.4 × 10-3 µM-1 min-1, respectively. The library was also evaluated for minimum inhibitory concentration (MIC) against two strains of Mtb, Mycobacterium smegmatis, and Mycobacterium abscessus. Compounds 4a and 4c were active against Mtb H37Rv mc26206 with MIC values of 3.12 and 1.5 µM, respectively. Closely related 4e showed similar activity against Mtb H37Rv mc26206 but also possessed activity against Mtb H37Ra, Mycobacterium smegmatis and Mycobacterium abscessus. Compounds 4a, 4c, and 4e all contained a common 1-(cyclohexylmethyl)-3-phenylurea motif. In summary, we identified a selective non-covalent inhibitor of Rv3802c and covalently irreversible inhibitors of Ag85C as well as the 1-(cyclohexylmethyl)-3-phenylurea motif which showed activity against a variety of mycobacteria.

15.
ACS Omega ; 4(2): 4348-4359, 2019 Feb 28.
Article En | MEDLINE | ID: mdl-30842987

The mycobacterial outer membrane, or mycomembrane, is essential for the viability and virulence of Mycobacterium tuberculosis and related pathogens. The mycomembrane is a dynamic structure, whose chemical composition and biophysical properties can change during stress to give an advantage to the bacterium. However, the mechanisms that govern mycomembrane remodeling and their significance to mycobacterial pathogenesis are still not well characterized. Recent studies have shown that trehalose dimycolate (TDM), a major glycolipid of the mycomembrane, is broken down by the mycobacteria-specific enzyme TDM hydrolase (Tdmh) in response to nutrient deprivation, a process which appears to modulate the mycomembrane to increase nutrient acquisition, but at the expense of stress tolerance. Tdmh activity thus balances the growth of M. tuberculosis during infection in a manner that is contingent upon host immunity. Current methods to probe Tdmh activity are limited, impeding the development of inhibitors and the investigation of the role of Tdmh in bacterial growth and persistence. Here, we describe the synthesis and evaluation of FRET-TDM, which is a fluorescence-quenched analogue of TDM that is designed to fluoresce upon hydrolysis by Tdmh and potentially other trehalose ester-degrading hydrolases involved in mycomembrane remodeling. We found that FRET-TDM was efficiently activated in vitro by recombinant Tdmh, generating a 100-fold increase in fluorescence. FRET-TDM was also efficiently activated in the presence of whole cells of Mycobacterium smegmatis and M. tuberculosis, but the observed signal was predominantly Tdmh-independent, suggesting that physiological levels of Tdmh are low and that other mycobacterial enzymes also hydrolyze the probe. The latter notion was confirmed by employing a native protein gel-based fluorescence assay to profile FRET-TDM-activating enzymes from M. smegmatis lysates. On the other hand, FRET-TDM was capable of detecting the activity of Tdmh in cells when it was overexpressed. Together, our data demonstrate that FRET-TDM is a convenient and sensitive in vitro probe of Tdmh activity, which will be beneficial for Tdmh enzymatic characterization and inhibitor screening. In more complex samples, for example, live cells or cell lysates, FRET-TDM can serve as a tool to probe Tdmh activity at elevated enzyme levels, and it may facilitate the identification and characterization of related hydrolases that are involved in mycomembrane remodeling. Our study also provides insights as to how the structure of FRET-TDM or related fluorogenic probes can be optimized to achieve improved specificity and sensitivity for detecting mycobacteria.

16.
Chembiochem ; 20(2): 260-269, 2019 01 18.
Article En | MEDLINE | ID: mdl-30402996

α,α'-Trehalose plays roles in the synthesis of several cell wall components involved in pathogenic mycobacteria virulence. Its absence in mammalian biochemistry makes trehalose-related biochemical processes potential targets for chemotherapy. The trehalose 6-phosphate synthase (TPS)/trehalose 6-phosphate phosphatase (TPP) pathway, also known as the OtsA/OtsB2 pathway, is the major pathway involved in the production of trehalose in Mycobacterium tuberculosis (Mtb). In addition, TPP is essential for Mtb survival. We describe the synthesis of α,α'-trehalose derivatives in the forms of the 6-phosphonic acid 4 (TMP), the 6-methylenephosphonic acid 5 (TEP), and the 6-N-phosphonamide 6 (TNP). These non-hydrolyzable substrate analogues of TPP were examined as inhibitors of Mtb, Mycobacterium lentiflavum (Mlt), and Mycobacterium triplex (Mtx) TPP. In all cases the compounds were most effective in inhibiting Mtx TPP, with TMP [IC50 =(288±32) µm] acting most strongly, followed by TNP [IC50 =(421±24) µm] and TEP [IC50 =(1959±261) µm]. The results also indicate significant differences in the analogue binding profile when comparing Mtb TPP, Mlt TPP, and Mtx TPP homologues.


Enzyme Inhibitors/pharmacology , Glucosyltransferases/antagonists & inhibitors , Mycobacterium tuberculosis/enzymology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Trehalose/pharmacology , Carbohydrate Conformation , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glucosyltransferases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Structure-Activity Relationship , Trehalose/chemical synthesis , Trehalose/chemistry
17.
ACS Omega ; 3(1): 1178-1186, 2018 Jan 31.
Article En | MEDLINE | ID: mdl-30023797

l-Threonine is an important supplement in the food industry. It is currently produced through fermentation of Escherichia coli but requires additional purification steps to remove E. coli endotoxin. To avoid these steps, it is desirable to use Corynebacterium glutamicum, a microorganism generally regarded as safe. Engineering of C. glutamicum to increase production of l-threonine has mainly focused on gene regulation as well as l-threonine export or carbon flux depletion. In this study, we focus on the negative feedback inhibition produced by l-threonine on the enzyme homoserine kinase (ThrB). Although l-threonine binds to allosteric sites of aspartate kinase (LysC) and homoserine dehydrogenase (Hom), serving as a noncompetitive inhibitor, it acts as a competitive inhibitor on ThrB. This is problematic when attempting to engineer enzymes that are nonresponsive to increasing cellular concentrations of l-threonine. Using primary structure alignment as well as analysis of the Methanocaldococcus jannaschii ThrB (MjaThrB) active site in complex with l-threonine (inhibitor of ThrB) and l-homoserine (substrate of ThrB), a conserved active-site alanine residue (A20) in C. glutamicum ThrB (CglThrB) was predicted to be important for differential interactions with l-threonine and l-homoserine. Through site-directed mutagenesis, we show that one variant of C. glutamicum ThrB, CglThrB-A20G, retains wild-type enzymatic activity, with dramatically decreased feedback inhibition by l-threonine. Additionally, by solving the first Corynebacterium X-ray crystal structure of homoserine kinase, we can confirm that the changes in l-threonine affinity to the CglThrB-A20G active site derive from loss of van der Waals interactions.

18.
Biochemistry ; 57(16): 2383-2393, 2018 04 24.
Article En | MEDLINE | ID: mdl-29601187

Tetrahydrolipstatin (THL) is a covalent inhibitor of many serine esterases. In mycobacteria, THL has been found to covalently react with 261 lipid esterases upon treatment of Mycobacterium bovis cell lysate. However, the covalent adduct is considered unstable in some cases because of the hydrolysis of the enzyme-linked THL adduct resulting in catalytic turnover. In this study, a library of THL stereoderivatives was tested against three essential Mycobacterium tuberculosis lipid esterases of interest for drug development to assess how the stereochemistry of THL affects respective enzyme inhibition and allows for cross enzyme inhibition. The mycolyltransferase Antigen 85C (Ag85C) was found to be stereospecific with regard to THL; covalent inhibition occurs within minutes and was previously shown to be irreversible. Conversely, the Rv3802 phospholipase A/thioesterase was more accepting of a variety of THL configurations and uses these compounds as alternative substrates. The reaction of the THL stereoderivatives with the thioesterase domain of polyketide synthase 13 (Pks13-TE) also leads to hydrolytic turnover and is nonstereospecific but occurs on a slower, multihour time scale. Our findings suggest the stereochemistry of the ß-lactone ring of THL is important for cross enzyme reactivity, while the two stereocenters of the peptidyl arm can affect enzyme specificity and the catalytic hydrolysis of the ß-lactone ring. The observed kinetic data for all three target enzymes are supported by recently published X-ray crystal structures of Ag85C, Rv3802, and Pks13-TE. Insights from this study provide a molecular basis for the kinetic modulation of three essential M. tuberculosis lipid esterases by THL and can be applied to increase potency and enzyme residence times and enhance the specificity of the THL scaffold.


Esterases/antagonists & inhibitors , Lactones/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Esterases/chemistry , Humans , Hydrolysis , Kinetics , Lactones/chemistry , Lipase/chemistry , Lipids/antagonists & inhibitors , Lipids/chemistry , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/pathogenicity , Orlistat , Tuberculosis/enzymology , Tuberculosis/microbiology
19.
J Biol Chem ; 293(10): 3651-3662, 2018 03 09.
Article En | MEDLINE | ID: mdl-29352107

Mycobacterium tuberculosis antigen 85 (Ag85) enzymes catalyze the transfer of mycolic acid (MA) from trehalose monomycolate to produce the mycolyl arabinogalactan (mAG) or trehalose dimycolate (TDM). These lipids define the protective mycomembrane of mycobacteria. The current model of substrate binding within the active sites of Ag85s for the production of TDM is not sterically and geometrically feasible; additionally, this model does not account for the production of mAG. Furthermore, this model does not address how Ag85s limit the hydrolysis of the acyl-enzyme intermediate while catalyzing acyl transfer. To inform an updated model, we obtained an Ag85 acyl-enzyme intermediate structure that resembles the mycolated form. Here, we present a 1.45-Å X-ray crystal structure of M. tuberculosis Ag85C covalently modified by tetrahydrolipstatin (THL), an esterase inhibitor that suppresses M. tuberculosis growth and mimics structural attributes of MAs. The mode of covalent inhibition differs from that observed in the reversible inhibition of the human fatty-acid synthase by THL. Similarities between the Ag85-THL structure and previously determined Ag85C structures suggest that the enzyme undergoes structural changes upon acylation, and positioning of the peptidyl arm of THL limits hydrolysis of the acyl-enzyme adduct. Molecular dynamics simulations of the modeled mycolated-enzyme form corroborate the structural analysis. From these findings, we propose an alternative arrangement of substrates that rectifies issues with the previous model and suggest a direct role for the ß-hydroxy of MA in the second half-reaction of Ag85 catalysis. This information affords the visualization of a complete mycolyltransferase catalytic cycle.


Acyltransferases/metabolism , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Models, Molecular , Mycobacterium tuberculosis/enzymology , Orlistat/metabolism , Protein Processing, Post-Translational , Acylation , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Acyltransferases/genetics , Amino Acid Substitution , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Biocatalysis , Carbohydrate Conformation , Crystallography, X-Ray , Molecular Dynamics Simulation , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Mycolic Acids/chemistry , Mycolic Acids/metabolism , Orlistat/chemistry , Protein Conformation , Proteolysis , Recombinant Proteins , Trehalose/chemistry , Trehalose/metabolism
20.
Anal Chem ; 90(3): 1740-1747, 2018 02 06.
Article En | MEDLINE | ID: mdl-29275620

S-Adenosylmethionine (AdoMet)-dependent methyltransferases (MTases) are an essential superfamily of enzymes that catalyze the transfer of a methyl group to several biomolecules. Alterations in the methylation of cellular components crucially impact vital biological processes, making MTases attractive drug targets for treating infectious diseases and diseases caused by overactive human-encoded MTases. Several methods have been developed for monitoring the activity of MTases, but most MTase assays have inherent limitations or are not amenable for high-throughput screening. We describe a universal, competitive fluorescence polarization (FP) assay that directly measures the production of S-adenosylhomocysteine (AdoHcy) from MTases. Our developed assay monitors the generation of AdoHcy by displacing a fluorescently labeled AdoHcy molecule complexed to a catalytically inert 5'-methylthioadenosine nucleosidase (MTAN-D198N) variant performed in a mix-and-read format. Producing the fluorescently labeled molecule involves a one-pot synthesis by combining AdoHcy with an amine-reactive rhodamine derivative, which possesses a Kd value of 11.3 ± 0.7 nM to MTAN-D198N. The developed competitive FP assay expresses a limit of detection for AdoHcy of 6 nM and exhibits a 34-fold preference to AdoHcy in comparison to AdoMet. We demonstrate the utility of the developed assay by performing a pilot screen with the NIH Clinical Collection as well as determining the kinetic parameters of l-histidine methylation for EgtD from Mycobacterium tuberculosis. Additionally, the developed assay is applicable to other AdoMet-dependent and ATP-dependent enzymes by detecting various adenosine-containing molecules including 5'-methylthioadenosine, AMP, and ADP.


Fluorescence Polarization/methods , S-Adenosylhomocysteine/analysis , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Helicobacter pylori/enzymology , Kinetics , Limit of Detection , Methyltransferases/chemistry , Methyltransferases/isolation & purification , Mycobacterium tuberculosis/enzymology , N-Glycosyl Hydrolases/chemistry , N-Glycosyl Hydrolases/isolation & purification , Rhodamines/chemical synthesis , Rhodamines/chemistry
...