Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 9(1): 13705, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31548575

ABSTRACT

Stable isotope-resolved metabolomics (SIRM) provides information regarding the relative activity of numerous metabolic pathways and the contribution of nutrients to specific metabolite pools; however, SIRM experiments can be difficult to execute, and data interpretation is challenging. Furthermore, standardization of analytical procedures and workflows remain significant obstacles for widespread reproducibility. Here, we demonstrate the workflow of a typical SIRM experiment and suggest experimental controls and measures of cross-validation that improve data interpretation. Inhibitors of glycolysis and oxidative phosphorylation as well as mitochondrial uncouplers serve as pharmacological controls, which help define metabolic flux configurations that occur under well-controlled metabolic states. We demonstrate how such controls and time course labeling experiments improve confidence in metabolite assignments as well as delineate metabolic pathway relationships. Moreover, we demonstrate how radiolabeled tracers and extracellular flux analyses integrate with SIRM to improve data interpretation. Collectively, these results show how integration of flux methodologies and use of pharmacological controls increase confidence in SIRM data and provide new biological insights.


Subject(s)
Mass Spectrometry/methods , Metabolomics/methods , Workflow , Data Interpretation, Statistical , Isotope Labeling/methods , Mass Spectrometry/standards , Metabolic Networks and Pathways , Metabolomics/standards , Reproducibility of Results
2.
Redox Biol ; 24: 101177, 2019 06.
Article in English | MEDLINE | ID: mdl-30939431

ABSTRACT

Previous studies indicate that mitochondria-localized lactate dehydrogenase (mLDH) might be a significant contributor to metabolism. In the heart, the presence of mLDH could provide cardiac mitochondria with a higher capacity to generate reducing equivalents directly available for respiration, especially during exercise when circulating lactate levels are high. The purpose of this study was to test the hypothesis that mLDH contributes to striated muscle bioenergetic function. Mitochondria isolated from murine cardiac and skeletal muscle lacked an appreciable ability to respire on lactate in the absence or presence of exogenous NAD+. Although three weeks of treadmill running promoted physiologic cardiac growth, mitochondria isolated from the hearts of acutely exercised or exercise-adapted mice showed no further increase in lactate oxidation capacity. In all conditions tested, cardiac mitochondria respired at >20-fold higher levels with provision of pyruvate compared with lactate. Similarly, skeletal muscle mitochondria showed little capacity to respire on lactate. Protease protection assays of isolated cardiac mitochondria confirmed that LDH is not localized within the mitochondrion. We conclude that mLDH does not contribute to cardiac bioenergetics in mice.


Subject(s)
L-Lactate Dehydrogenase/metabolism , Mitochondria, Muscle/metabolism , Muscle, Striated/metabolism , Animals , Cell Respiration , Male , Mice , Mitochondria, Heart/metabolism , Oxidation-Reduction , Physical Conditioning, Animal
SELECTION OF CITATIONS
SEARCH DETAIL