Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Cell Chem Biol ; 29(6): 970-984.e6, 2022 06 16.
Article En | MEDLINE | ID: mdl-35148834

Signal transduction pathways post-translationally regulating nucleotide metabolism remain largely unknown. Guanosine monophosphate reductase (GMPR) is a nucleotide metabolism enzyme that decreases GTP pools by converting GMP to IMP. We observed that phosphorylation of GMPR at Tyr267 is critical for its activity and found that this phosphorylation by ephrin receptor tyrosine kinase EPHA4 decreases GTP pools in cell protrusions and levels of GTP-bound RAC1. EPHs possess oncogenic and tumor-suppressor activities, although the mechanisms underlying switches between these two modes are poorly understood. We demonstrated that GMPR plays a key role in EPHA4-mediated RAC1 suppression. This supersedes GMPR-independent activation of RAC1 by EPHA4, resulting in a negative overall effect on melanoma cell invasion and tumorigenicity. Accordingly, EPHA4 levels increase during melanoma progression and inversely correlate with GMPR levels in individual melanoma tumors. Therefore, phosphorylation of GMPR at Tyr267 is a metabolic signal transduction switch controlling GTP biosynthesis and transformed phenotypes.


Melanoma , Receptor, EphA4/metabolism , GMP Reductase/genetics , GMP Reductase/metabolism , Guanosine Triphosphate/metabolism , Humans , Melanoma/metabolism , Nucleotides/metabolism , Phosphorylation
2.
Nature ; 589(7840): 120-124, 2021 01.
Article En | MEDLINE | ID: mdl-32937646

Viperin is an interferon-induced cellular protein that is conserved in animals1. It has previously been shown to inhibit the replication of multiple viruses by producing the ribonucleotide 3'-deoxy-3',4'-didehydro (ddh)-cytidine triphosphate (ddhCTP), which acts as a chain terminator for viral RNA polymerase2. Here we show that eukaryotic viperin originated from a clade of bacterial and archaeal proteins that protect against phage infection. Prokaryotic viperins produce a set of modified ribonucleotides that include ddhCTP, ddh-guanosine triphosphate (ddhGTP) and ddh-uridine triphosphate (ddhUTP). We further show that prokaryotic viperins protect against T7 phage infection by inhibiting viral polymerase-dependent transcription, suggesting that it has an antiviral mechanism of action similar to that of animal viperin. Our results reveal a class of potential natural antiviral compounds produced by bacterial immune systems.


Antiviral Agents/metabolism , Archaeal Proteins/metabolism , Bacterial Proteins/metabolism , Bacteriophage T7/immunology , Evolution, Molecular , Prokaryotic Cells/metabolism , Proteins/metabolism , Antiviral Agents/immunology , Archaeal Proteins/chemistry , Bacteria/immunology , Bacteria/metabolism , Bacteria/virology , Bacterial Proteins/chemistry , Bacteriophage T7/enzymology , Bacteriophage T7/physiology , DNA-Directed DNA Polymerase/metabolism , Humans , Oxidoreductases Acting on CH-CH Group Donors , Prokaryotic Cells/immunology , Prokaryotic Cells/virology , Proteins/chemistry , Proteins/genetics , Ribonucleotides/biosynthesis , Ribonucleotides/chemistry , Ribonucleotides/metabolism , Transcription, Genetic/drug effects
3.
Biochemistry ; 59(25): 2359-2370, 2020 06 30.
Article En | MEDLINE | ID: mdl-32479091

The remarkable power and specificity of enzyme catalysis rely on the dynamic alignment of the enzyme, substrates, and cofactors, yet the role of dynamics has usually been approached from the perspective of the protein. We have been using an underappreciated NMR technique, subtesla high-resolution field cycling 31P NMR relaxometry, to investigate the dynamics of the enzyme-bound substrates and cofactor on guanosine-5'-monophosphate reductase (GMPR). GMPR forms two dead end, yet catalytically competent, complexes that mimic distinct steps in the catalytic cycle: E·IMP·NADP+ undergoes a partial hydride transfer reaction, while E·GMP·NADP+ undergoes a partial deamination reaction. A different cofactor conformation is required for each partial reaction. Here we report the effects of mutations designed to perturb cofactor conformation and ammonia binding with the goal of identifying the structural features that contribute to the distinct dynamic signatures of the hydride transfer and deamination complexes. These experiments suggest that Asp129 is a central cog in a dynamic network required for both hydride transfer and deamination. In contrast, Lys77 modulates the conformation and mobility of substrates and cofactors in a reaction-specific manner. Thr105 and Tyr318 are part of a deamination-specific dynamic network that includes the 2'-OH of GMP. These residues have comparatively little effect on the dynamic properties of the hydride transfer complex. These results further illustrate the potential of high-resolution field cycling NMR relaxometry for the investigation of ligand dynamics. In addition, exchange experiments indicate that NH3/NH4+ has a high affinity for the deamination complex but a low affinity for the hydride transfer complex, suggesting that the movement of ammonia may gate the cofactor conformational change. Collectively, these experiments reinforce the view that the enzyme, substrates, and cofactor are linked in intricate, reaction-specific, dynamic networks and demonstrate that distal portions of the substrates and cofactors are critical features in these networks.


Coenzymes , GMP Reductase , NADP , Humans , Ammonia/metabolism , Biocatalysis , Coenzymes/chemistry , Coenzymes/metabolism , GMP Reductase/genetics , GMP Reductase/metabolism , Guanosine Monophosphate/chemistry , Kinetics , Molecular Conformation , Mutation , NADP/chemistry , NADP/metabolism , Protein Binding
4.
Clin Genet ; 97(2): 276-286, 2020 02.
Article En | MEDLINE | ID: mdl-31600844

Autosomal dominant progressive external ophthalmoplegia (adPEO) is a late-onset, Mendelian mitochondrial disorder characterised by paresis of the extraocular muscles, ptosis, and skeletal-muscle restricted multiple mitochondrial DNA (mtDNA) deletions. Although dominantly inherited, pathogenic variants in POLG, TWNK and RRM2B are among the most common genetic defects of adPEO, identification of novel candidate genes and the underlying pathomechanisms remains challenging. We report the clinical, genetic and molecular investigations of a patient who presented in the seventh decade of life with PEO. Oxidative histochemistry revealed cytochrome c oxidase-deficient fibres and occasional ragged red fibres showing subsarcolemmal mitochondrial accumulation in skeletal muscle, while molecular studies identified the presence of multiple mtDNA deletions. Negative candidate screening of known nuclear genes associated with PEO prompted diagnostic exome sequencing, leading to the prioritisation of a novel heterozygous c.547G>C variant in GMPR (NM_006877.3) encoding guanosine monophosphate reductase, a cytosolic enzyme required for maintaining the cellular balance of adenine and guanine nucleotides. We show that the novel c.547G>C variant causes aberrant splicing, decreased GMPR protein levels in patient skeletal muscle, proliferating and quiescent cells, and is associated with subtle changes in nucleotide homeostasis protein levels and evidence of disturbed mtDNA maintenance in skeletal muscle. Despite confirmation of GMPR deficiency, demonstrating marked defects of mtDNA replication or nucleotide homeostasis in patient cells proved challenging. Our study proposes that GMPR is the 19th locus for PEO and highlights the complexities of uncovering disease mechanisms in late-onset PEO phenotypes.


DNA, Mitochondrial/genetics , GMP Reductase/genetics , Late Onset Disorders/genetics , Muscle, Skeletal/enzymology , Ophthalmoplegia/genetics , Adenine/metabolism , Aged , Cells, Cultured , Cytochrome-c Oxidase Deficiency/metabolism , DNA Replication , DNA, Mitochondrial/metabolism , Female , Fibroblasts/enzymology , GMP Reductase/deficiency , GMP Reductase/metabolism , Guanine/metabolism , HEK293 Cells , HeLa Cells , Heterozygote , Humans , Late Onset Disorders/metabolism , Late Onset Disorders/pathology , Muscle, Skeletal/pathology , Ophthalmoplegia/enzymology , Ophthalmoplegia/physiopathology , Oxidative Phosphorylation , RNA Splicing , Sequence Deletion , Exome Sequencing
5.
Biochemistry ; 57(22): 3146-3154, 2018 06 05.
Article En | MEDLINE | ID: mdl-29547266

The ability of enzymes to modulate the dynamics of bound substrates and cofactors is a critical feature of catalysis, but the role of dynamics has largely been approached from the perspective of the protein. Here, we use an underappreciated NMR technique, subtesla high-resolution field-cycling 31P NMR relaxometry, to interrogate the dynamics of enzyme bound substrates and cofactors in guanosine-5'-monophosphate reductase (GMPR). These experiments reveal distinct binding modes and dynamic profiles associated with the 31P nuclei in the Michaelis complexes for the deamination and hydride transfer steps of the catalytic cycle. Importantly, the substrate is constrained and the cofactor is more dynamic in the deamination complex E·GMP·NADP+, whereas the substrate is more dynamic and the cofactor is constrained in the hydride transfer complex E·IMP·NADP+. The presence of D2O perturbed the relaxation of the 31P nuclei in E·IMP·NADP+ but not in E·GMP·NADP+, providing further evidence of distinct binding modes with different dynamic properties. dIMP and dGMP are poor substrates, and the dynamics of the cofactor complexes of dGMP/dIMP are disregulated relative to GMP/IMP. The substrate 2'-OH interacts with Asp219, and mutation of Asp219 to Ala decreases the value of Vmax by a factor of 30. Counterintuitively, loss of Asp219 makes both substrates and cofactors less dynamic. These observations suggest that the interactions between the substrate 2'-OH and Asp219 coordinate the dynamic properties of the Michaelis complexes, and these dynamics are important for progression through the catalytic cycle.


GMP Reductase/chemistry , GMP Reductase/physiology , Magnetic Resonance Spectroscopy/methods , Binding Sites , Catalysis , Guanosine/metabolism , Kinetics , Magnetic Resonance Imaging , Models, Molecular , NADP/metabolism , Protein Binding
6.
ACS Chem Biol ; 11(12): 3328-3337, 2016 12 16.
Article En | MEDLINE | ID: mdl-27704767

Targeted protein degradation is a promising strategy for drug design and functional assessment. Several small molecule approaches have been developed that localize target proteins to ubiquitin ligases, inducing ubiquitination and subsequent degradation by the 26S proteasome. We discovered that the degradation of a target protein can also be induced by a recognition ligand linked to tert-butyl carbamate (Boc3)-protected arginine (B3A). Here, we show that this process requires the proteasome but does not involve ubiquitination of the target protein. B3A does not perturb the structure of the target protein; instead, a B3A-ligand stabilizes its target protein. B3A ligands stimulate activity of purified 20S proteasome, demonstrating that the tag binds directly to the 20S proteasome. Moreover, purified 20S proteasome is sufficient to degrade target proteins in the presence of their respective B3A-linked recognition ligands. These observations suggest a simple model for B3A-mediated degradation wherein the B3A tag localizes target proteins directly to the 20S proteasome. Thus, B3A ligands are the first example of a ubiquitin-free strategy for targeted protein degradation.


Arginine/analogs & derivatives , Arginine/pharmacology , Carbamates/chemistry , Carbamates/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Drug Design , HeLa Cells , Humans , Ligands
7.
J Biol Chem ; 291(44): 22988-22998, 2016 10 28.
Article En | MEDLINE | ID: mdl-27613871

Guanosine-5'-monophosphate reductase (GMPR) catalyzes the reduction of GMP to IMP and ammonia with concomitant oxidation of NADPH. Here we investigated the structure and dynamics of enzyme-bound substrates and cofactors by measuring 31P relaxation rates over a large magnetic field range using high resolution field cycling NMR relaxometry. Surprisingly, these experiments reveal differences in the low field relaxation profiles for the monophosphate of GMP compared with IMP in their respective NADP+ complexes. These complexes undergo partial reactions that mimic different steps in the overall catalytic cycle. The relaxation profiles indicate that the substrate monophosphates have distinct interactions in E·IMP·NADP+ and E·GMP·NADP+ complexes. These findings were not anticipated by x-ray crystal structures, which show identical interactions for the monophosphates of GMP and IMP in several inert complexes. In addition, the motion of the cofactor is enhanced in the E·GMP·NADP+ complex. Last, the motions of the substrate and cofactor are coordinately regulated; the cofactor has faster local motions than GMP in the deamination complex but is more constrained than IMP in that complex, leading to hydride transfer. These results show that field cycling can be used to investigate the dynamics of protein-bound ligands and provide new insights into how portions of the substrate remote from the site of chemical transformation promote catalysis.


Coenzymes/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , GMP Reductase/chemistry , Biocatalysis , Coenzymes/metabolism , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , GMP Reductase/genetics , GMP Reductase/metabolism , Guanine Nucleotides/chemistry , Guanine Nucleotides/metabolism , Inosine Monophosphate/chemistry , Inosine Monophosphate/metabolism , Kinetics , Magnetic Resonance Spectroscopy , NADP/chemistry , NADP/metabolism , Protein Binding
9.
J Biol Chem ; 288(14): 9779-9789, 2013 Apr 05.
Article En | MEDLINE | ID: mdl-23426373

The motor protein nonmuscle myosin II (NMII) must undergo dynamic oligomerization into filaments to perform its cellular functions. A small nonhelical region at the tail of the long coiled-coil region (tailpiece) is a common feature of all dynamically assembling myosin II proteins. This tailpiece is a key regulatory domain affecting NMII filament assembly properties and is subject to phosphorylation in vivo. We previously demonstrated that the positively charged region of the tailpiece binds to assembly-incompetent NMII-C fragments, inducing filament assembly. In the current study, we investigated the molecular mechanisms by which the tailpiece regulates NMII-C self-assembly. Using alanine scan, we found that specific positive and aromatic residues within the positively charged region of the tailpiece are important for inducing NMII-C filament assembly and for filament elongation. Combining peptide arrays with deletion studies allowed us to identify the tailpiece binding sites in the coiled-coil rod. Elucidation of the mechanism by which the tailpiece induces filament assembly permitted us further investigation into the role of tailpiece phosphorylation. Sedimentation and CD spectroscopy identified that phosphorylation of Thr(1957) or Thr(1960) inhibited the ability of the tailpiece to bind the coiled-coil rod and to induce NMII-C filament formation. This study provides molecular insight into the role of specific residues within the NMII-C tailpiece that are responsible for shifting the oligomeric equilibrium of NMII-C toward filament assembly and determining its morphology.


Myosin Type II/metabolism , Amino Acid Sequence , Animals , Binding Sites , Circular Dichroism , Hydrogen-Ion Concentration , Mice , Microscopy, Electron/methods , Molecular Sequence Data , Mutation , Myosin Type II/chemistry , Myosins/chemistry , Peptides/chemistry , Phosphorylation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Threonine/chemistry
10.
Mol Biol Cell ; 22(24): 4726-39, 2011 Dec.
Article En | MEDLINE | ID: mdl-21998200

Proper functioning of the protein-folding quality control network depends on the network's ability to discern diverse structural perturbations to the native states of its protein substrates. Despite the centrality of the detection of misfolded states to cell home-ostasis, very little is known about the exact sequence and structural features that mark a protein as being misfolded. To investigate these features, we studied the requirements for the degradation of the yeast kinetochore protein Ndc10p. Mutant Ndc10p is a substrate of a protein-folding quality control pathway mediated by the E3 ubiquitin (Ub) ligase Doa10p at the endoplasmic reticulum (ER)/nuclear envelope membrane. Analysis of Ndc10p mutant derivatives, employing a reverse genetics approach, identified an autonomous quality control-associated degradation motif near the C-terminus of the protein. This motif is composed of two indispensable hydrophobic elements: a hydrophobic surface of an amphipathic helix and a loosely structured hydrophobic C-terminal tail. Site-specific point mutations expose these elements, triggering ubiquitin-mediated and HSP70 chaperone-dependent degradation of Ndc10p. These findings substantiate the ability of the ER quality control system to recognize subtle perturbation(s) in the native structure of a nuclear protein.


DNA-Binding Proteins/metabolism , Endoplasmic Reticulum/metabolism , Kinetochores/metabolism , Nuclear Envelope/metabolism , Protein Folding , Proteolysis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs , DNA-Binding Proteins/genetics , Endoplasmic Reticulum/genetics , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Mutation , Nuclear Envelope/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
J Biol Chem ; 285(10): 7079-86, 2010 Mar 05.
Article En | MEDLINE | ID: mdl-19959848

The motor protein, non-muscle myosin II (NMII), must undergo dynamic oligomerization into filaments to participate in cellular processes such as cell migration and cytokinesis. A small non-helical region at the tail of the long coiled-coil region (tailpiece) is a common feature of all dynamically assembling myosin II proteins. In this study, we investigated the role of the tailpiece in NMII-C self-assembly. We show that the tailpiece is natively unfolded, as seen by circular dichroism and NMR experiments, and is divided into two regions of opposite charge. The positively charged region (Tailpiece(1946-1967)) starts at residue 1946 and is extended by seven amino acids at its N terminus from the traditional coiled-coil ending proline (Tailpiece(1953-1967)). Pull-down and sedimentation assays showed that the positive Tailpiece(1946-1967) binds to assembly incompetent NMII-C fragments inducing filament assembly. The negative region, residues 1968-2000, is responsible for NMII paracrystal morphology as determined by chimeras in which the negative region was swapped between the NMII isoforms. Mixing the positive and negative peptides had no effect on the ability of the positive peptide to bind and induce filament assembly. This study provides molecular insight into the role of the structurally disordered tailpiece of NMII-C in shifting the oligomeric equilibrium of NMII-C toward filament assembly and determining its morphology.


Cytoskeleton , Myosin Type II/chemistry , Myosin Type II/metabolism , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Amino Acid Sequence , Animals , Circular Dichroism , Cytoskeleton/chemistry , Cytoskeleton/ultrastructure , Mice , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Myosin Type II/genetics , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Folding , Protein Isoforms/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
12.
Biopolymers ; 90(2): 105-16, 2008.
Article En | MEDLINE | ID: mdl-18189286

Peptides are valuable tools for studying protein-protein interactions, especially in cases of isolated protein domains and natively unfolded proteins. Here, we used peptides to quantitatively characterize the interaction between the natively unfolded HIV-1 Tat protein and the tetramerization domain of the cellular tumor suppressor protein p53. We used peptide mapping, fluorescence anisotropy, and NMR spectroscopy to perform a detailed structural and biophysical characterization of the interaction between the two proteins and elucidate its molecular mechanism, which have so far been studied using cell-based methods. We show that the p53 tetramerization domain, p53(326-355), binds directly to residues 1-35 and 47-57 in Tat. We have characterized the interaction between p53(326-355) and Tat(47-57) in detail. The p53 residues that are mainly involved in binding to Tat(47-57) are E343 and E349, which bind to the positively charged arginine-rich motif of Tat by a partly electrostatic mechanism. All oligomerization states of p53(326-355) bind Tat(47-57) without inhibiting p53 tetramerization, since the residues in p53(326-355) that bind Tat(47-57) face away from the tetramerization interface. We conclude that p53 is able to bind Tat as a transcriptionally active tetramer.


Gene Products, tat/chemistry , Gene Products, tat/metabolism , HIV-1/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Alanine/metabolism , Amino Acid Motifs , Enzyme-Linked Immunosorbent Assay , Gene Products, tat/chemical synthesis , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Osmolar Concentration , Peptide Fragments/chemical synthesis , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Static Electricity , Temperature , Tumor Suppressor Protein p53/chemical synthesis
...