Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 21818, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311597

ABSTRACT

Burn wounds are highly susceptible sites for colonization and infection by bacteria and fungi. Large wound surface, impaired local immunity, and broad-spectrum antibiotic therapy support growth of opportunistic fungi such as Candida albicans, which may lead to invasive candidiasis. Currently, it remains unknown whether depressed host defenses or fungal virulence drive the progression of burn wound candidiasis. Here we established an ex vivo burn wound model, where wounds were inflicted by applying preheated soldering iron to human skin explants, resulting in highly reproducible deep second-degree burn wounds. Eschar removal by debridement allowed for deeper C. albicans penetration into the burned tissue associated with prominent filamentation. Active migration of resident tissue neutrophils towards the damaged tissue and release of pro-inflammatory cytokine IL-1ß accompanied the burn. The neutrophil recruitment was further increased upon supplementation of the model with fresh immune cells. Wound area and depth decreased over time, indicating healing of the damaged tissue. Importantly, prominent neutrophil presence at the infected site correlated to the limited penetration of C. albicans into the burned tissue. Altogether, we established a reproducible burn wound model of candidiasis using ex vivo human skin explants, where immune responses actively control the progression of infection and promote tissue healing.


Subject(s)
Burns/immunology , Candida albicans/immunology , Candidiasis/immunology , Neutrophils/immunology , Skin/immunology , Wound Infection/immunology , Adult , Burns/microbiology , Burns/pathology , Candidiasis/pathology , Female , Humans , Interleukin-1beta/immunology , Middle Aged , Neutrophils/pathology , Skin/microbiology , Skin/pathology , Wound Infection/microbiology , Wound Infection/pathology
2.
PLoS One ; 8(9): e75298, 2013.
Article in English | MEDLINE | ID: mdl-24098691

ABSTRACT

The pea aphid (Acyrthosiphon pisum Harris), a legume specialist, encompasses at least 11 genetically distinct sympatric host races. Each host race shows a preference for a certain legume species. Six pea aphid clones from three host races were used to localize plant factors influencing aphid probing and feeding behavior on four legume species. Aphid performance was tested by measuring survival and growth. The location of plant factors influencing aphid probing and feeding was determined using the electrical penetration graph (EPG) technique. Every aphid clone performed best on the plant species from which it was originally collected, as well as on Vicia faba. On other plant species, clones showed intermediate or poor performance. The most important plant factors influencing aphid probing and feeding behavior were localized in the epidermis and sieve elements. Repetitive puncturing of sieve elements might be relevant for establishing phloem feeding, since feeding periods appear nearly exclusively after these repetitive sieve element punctures. A combination of plant factors influences the behavior of pea aphid host races on different legume species and likely contributes to the maintenance of these races.


Subject(s)
Aphids/physiology , Fabaceae/chemistry , Fabaceae/parasitology , Feeding Behavior/physiology , Analysis of Variance , Animals , Electric Conductivity , Europe , Mesophyll Cells/chemistry , Plant Epidermis/chemistry , Species Specificity , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL