Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
Reg Anesth Pain Med ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977282

ABSTRACT

BACKGROUND: A bilateral oblique subcostal transverse abdominis plane block may help provide perioperative analgesia and reduce opioid use in patients undergoing sublay mesh hernia repair, but its clinical value is unclear. METHODS: In a single-centre, prospective, placebo-controlled, double-blind study, patients scheduled for sublay mesh hernia repair were randomized to receive oblique subcostal transverse abdominis plane blocks with either 60 ml of 0.375% ropivacaine (n=19) or isotonic saline (placebo, n=17). The primary outcome was patient-controlled total morphine consumption at 8:00 p.m. on the second postoperative day (POD), while secondary outcomes included the total morphine consumption during the post-anesthesia care unit stay and the occurrence of adverse events. RESULTS: Total morphine consumption at 8:00 p.m. on the second POD was higher in patients receiving ropivacaine (39 mg, IQR 22, 62) compared with placebo (24 mg, IQR 7, 39), p value = 0.04. In contrast, the ropivacaine group received 2 mg less morphine during the post-anesthesia care unit stay (4 mg, IQR: 4, 9 mg vs 2 mg, IQR: 2,6 mg, p = 0.04). Patients receiving ropivacaine used more morphine (8:00 p.m. on the first POD until 8:00 a.m. on the second POD: 8 mg, IQR: 4, 18 mg vs 2 mg, IQR: 0, 9 mg, p = 0.01) and reported higher maximum pain scores since the last assessment (8:00 a.m. on the second POD: 5, IQR: 4, 7 vs 4, IQR: 3, 5, p = 0.03). There were no differences in adverse events between groups. CONCLUSIONS: Bilateral oblique subcostal transverse abdominis plane blocks in patients undergoing sublay mesh hernia repair were not associated with a prolonged reduction in patient-controlled total morphine consumption in the evening of the second POD in this study. Rebound pain might explain the additional excess opioid required by the ropivacaine group.

2.
Intensive Care Med Exp ; 12(1): 55, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874694

ABSTRACT

BACKGROUND: Risk stratification and outcome prediction are crucial for intensive care resource planning. In addressing the large data sets of intensive care unit (ICU) patients, we employed the Explainable Boosting Machine (EBM), a novel machine learning model, to identify determinants of acute kidney injury (AKI) in these patients. AKI significantly impacts outcomes in the critically ill. METHODS: An analysis of 3572 ICU patients was conducted. Variables such as average central venous pressure (CVP), mean arterial pressure (MAP), age, gender, and comorbidities were examined. This analysis combined traditional statistical methods with the EBM to gain a detailed understanding of AKI risk factors. RESULTS: Our analysis revealed chronic kidney disease, heart failure, arrhythmias, liver disease, and anemia as significant comorbidities influencing AKI risk, with liver disease and anemia being particularly impactful. Surgical factors were also key; lower GI surgery heightened AKI risk, while neurosurgery was associated with a reduced risk. EBM identified four crucial variables affecting AKI prediction: anemia, liver disease, and average CVP increased AKI risk, whereas neurosurgery decreased it. Age was a progressive risk factor, with risk escalating after the age of 50 years. Hemodynamic instability, marked by a MAP below 65 mmHg, was strongly linked to AKI, showcasing a threshold effect at 60 mmHg. Intriguingly, average CVP was a significant predictor, with a critical threshold at 10.7 mmHg. CONCLUSION: Using an Explainable Boosting Machine enhance the precision in AKI risk factors in ICU patients, providing a more nuanced understanding of known AKI risks. This approach allows for refined predictive modeling of AKI, effectively overcoming the limitations of traditional statistical models.

3.
Basic Res Cardiol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811421

ABSTRACT

Neutrophils are not only involved in immune defense against infection but also contribute to the exacerbation of tissue damage after ischemia and reperfusion. We have previously shown that genetic ablation of regulatory Gαi proteins in mice has both protective and deleterious effects on myocardial ischemia reperfusion injury (mIRI), depending on which isoform is deleted. To deepen and analyze these findings in more detail the contribution of Gαi2 proteins in resident cardiac vs circulating blood cells for mIRI was first studied in bone marrow chimeras. In fact, the absence of Gαi2 in all blood cells reduced the extent of mIRI (22,9% infarct size of area at risk (AAR) Gnai2-/- → wt vs 44.0% wt → wt; p < 0.001) whereas the absence of Gαi2 in non-hematopoietic cells increased the infarct damage (66.5% wt → Gnai2-/- vs 44.0% wt → wt; p < 0.001). Previously we have reported the impact of platelet Gαi2 for mIRI. Here, we show that infarct size was substantially reduced when Gαi2 signaling was either genetically ablated in neutrophils/macrophages using LysM-driven Cre recombinase (AAR: 17.9% Gnai2fl/fl LysM-Cre+/tg vs 42.0% Gnai2fl/fl; p < 0.01) or selectively blocked with specific antibodies directed against Gαi2 (AAR: 19.0% (anti-Gαi2) vs 49.0% (IgG); p < 0.001). In addition, the number of platelet-neutrophil complexes (PNCs) in the infarcted area were reduced in both, genetically modified (PNCs: 18 (Gnai2fl/fl; LysM-Cre+/tg) vs 31 (Gnai2fl/fl); p < 0.001) and in anti-Gαi2 antibody-treated (PNCs: 9 (anti-Gαi2) vs 33 (IgG); p < 0.001) mice. Of note, significant infarct-limiting effects were achieved with a single anti-Gαi2 antibody challenge immediately prior to vessel reperfusion without affecting bleeding time, heart rate or cellular distribution of neutrophils. Finally, anti-Gαi2 antibody treatment also inhibited transendothelial migration of human neutrophils (25,885 (IgG) vs 13,225 (anti-Gαi2) neutrophils; p < 0.001), collectively suggesting that a therapeutic concept of functional Gαi2 inhibition during thrombolysis and reperfusion in patients with myocardial infarction should be further considered.

5.
Blood Adv ; 8(11): 2660-2674, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38489236

ABSTRACT

ABSTRACT: Pulmonary defense mechanisms are critical for host integrity during pneumonia and sepsis. This defense is fundamentally dependent on the activation of neutrophils during the innate immune response. Recent work has shown that semaphorin 7A (Sema7A) holds significant impact on platelet function, yet its role on neutrophil function within the lung is not well understood. This study aimed to identify the role of Sema7A during pulmonary inflammation and sepsis. In patients with acute respiratory distress syndrome (ARDS), we were able to show a correlation between Sema7A and oxygenation levels. During subsequent workup, we found that Sema7A binds to the neutrophil PlexinC1 receptor, increasing integrins, and L-selectin on neutrophils. Sema7A prompted neutrophil chemotaxis in vitro and the formation of platelet-neutrophil complexes in vivo. We also observed altered adhesion and transmigration of neutrophils in Sema7A-/-animals in the lung during pulmonary inflammation. This effect resulted in increased number of neutrophils in the interstitial space of Sema7A-/- animals but reduced numbers of neutrophils in the alveolar space during pulmonary sepsis. This finding was associated with significantly worse outcome of Sema7A-/- animals in a model of pulmonary sepsis. Sema7A has an immunomodulatory effect in the lung, affecting pulmonary sepsis and ARDS. This effect influences the response of neutrophils to external aggression and might influence patient outcome. This trial was registered at www.ClinicalTrials.gov as #NCT02692118.


Subject(s)
Antigens, CD , Neutrophils , Pneumonia , Semaphorins , Sepsis , Semaphorins/metabolism , Sepsis/immunology , Sepsis/metabolism , Neutrophils/metabolism , Neutrophils/immunology , Humans , Animals , Mice , Antigens, CD/metabolism , Pneumonia/metabolism , Pneumonia/immunology , GPI-Linked Proteins/metabolism , Male , Disease Models, Animal , Mice, Knockout , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , Female
6.
Intensive Care Med ; 50(2): 247-257, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38285051

ABSTRACT

PURPOSE: Acute kidney disease (AKD) is a significant health care burden worldwide. However, little is known about this complication after major surgery. METHODS: We conducted an international prospective, observational, multi-center study among patients undergoing major surgery. The primary study endpoint was the incidence of AKD (defined as new onset of estimated glomerular filtration rate (eCFR) < 60 ml/min/1.73 m2 present on day 7 or later) among survivors. Secondary endpoints included the relationship between early postoperative acute kidney injury (AKI) (within 72 h after major surgery) and subsequent AKD, the identification of risk factors for AKD, and the rate of chronic kidney disease (CKD) progression in patients with pre-existing CKD. RESULTS: We studied 9510 patients without pre-existing CKD. Of these, 940 (9.9%) developed AKD after 7 days of whom 34.1% experiencing an episode of early postoperative-AKI. Rates of AKD after 7 days significantly increased with the severity (19.1% Kidney Disease Improving Global Outcomes [KDIGO] 1, 24.5% KDIGO2, 34.3% KDIGO3; P < 0.001) and duration (15.5% transient vs 38.3% persistent AKI; P < 0.001) of early postoperative-AKI. Independent risk factors for AKD included early postoperative-AKI, exposure to perioperative nephrotoxic agents, and postoperative pneumonia. Early postoperative-AKI carried an independent odds ratio for AKD of 2.64 (95% confidence interval [CI] 2.21-3.15). Of 663 patients with pre-existing CKD, 42 (6.3%) had worsening CKD at day 90. In patients with CKD and an episode of early AKI, CKD progression occurred in 11.6%. CONCLUSION: One in ten major surgery patients developed AKD beyond 7 days after surgery, in most cases without an episode of early postoperative-AKI. However, early postoperative-AKI severity and duration were associated with an increased rate of AKD and early postoperative-AKI was strongly associated with AKD independent of all other potential risk factors.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Humans , Prospective Studies , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Acute Disease , Kidney , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology
7.
Front Immunol ; 14: 1251026, 2023.
Article in English | MEDLINE | ID: mdl-38094294

ABSTRACT

Introduction: The study explores the role of endothelial Semaphorin 7A (SEMA7A) in inflammatory processes. SEMA7A is known for enhancing inflammation during tissue hypoxia and exhibiting anti-inflammatory properties in the intestinal system during colitis. This research extends the understanding of SEMA7A's function by examining its role in inflammatory peritonitis and intestinal inflammation. Methods: The research involved inducing peritonitis in SEMA7A knockout (SEMA7A-/-) and wild-type (WT) animals through Zymosan A (ZyA) injection. The inflammatory response was assessed by measuring cell count and cytokine release. In parallel, the study investigated the expression of SEMA7A in intestinal epithelial cells under inflammatory stimuli and its impact on interleukin 10 (IL-10) production using an in vitro co-culture model of monocytes and epithelial cells. Additionally, the distribution of SEMA7A target receptors, particularly ITGAV/ITGB1 (CD51/CD29), was analyzed in WT animals. Results: The results revealed that SEMA7A-/- animals exhibited increased inflammatory peritonitis compared to the WT animals. Inflammatory conditions in intestinal epithelial cells led to the induction of SEMA7A. The co-culture experiments demonstrated that SEMA7A induced IL-10 production, which depended on integrin receptors and was independent of PLXNC1 expression. Furthermore, ITGAV/ITGB1 emerged as the predominant SEMA7A receptor in the intestinal area of WT animals. Discussion: These findings underscore the multifaceted role of SEMA7A in inflammatory processes. The differential responses in peritonitis and intestinal inflammation suggest that SEMA7A's function is significantly influenced by the expression and distribution of its target receptors within different organ systems. The study highlights the complex and context-dependent nature of SEMA7A in mediating inflammatory responses.


Subject(s)
Peritonitis , Semaphorins , Animals , Antigens, CD/metabolism , Integrins , Interleukin-10/genetics , Semaphorins/genetics , Semaphorins/metabolism , Peritonitis/chemically induced , Inflammation
8.
J Clin Med ; 12(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068459

ABSTRACT

BACKGROUND: Veno-arterial extracorporeal membrane oxygenation (vaECMO) removal reflects a critical moment and factors of adverse outcomes are incompletely understood. Thus, we studied various patient-related factors during vaECMO removal to determine their association with outcomes. METHODS: A total of 58 patients from a university hospital were included retrospectively. Demographic, clinical, and echocardiographic parameters were recorded while under vaECMO support, as well as the need for inotropic and vasoactive-inotropic scores (VIS). Successful weaning was defined as 28-day survival without reinitiation of vaECMO. RESULTS: Patient age differed significantly between patients with a successful and a failed vaECMO weaning (54 ± 14 vs. 62 ± 12 years, p = 0.029). In univariable logistic regression, age (OR 0.952 (0.909-0.997), p = 0.038), the necessities for inotropic agents at the time of echocardiography (OR 0.333 (0.113-0.981), p = 0.046), and vaECMO removal (OR 0.266 (0.081-0.877), p = 0.030) as well as the dobutamine dose during removal (OR 0.649 (0.473-0.890), p = 0.007), were significantly associated with a successful weaning from vaECMO. Age (HR 1.048 (1.006-1.091), p = 0.024) and the VIS (HR 1.030 (1.004-1.056), p = 0.025) at the time of vaECMO removal were independently associated with survival in bivariable Cox regression. In Kaplan-Meier analysis, a VIS of >5.1 at vaECMO removal was associated with impaired survival (log-rank p = 0.025). CONCLUSIONS: In this cohort, age and the extent of vasoactive-inotropic agents were associated with adverse outcomes following vaECMO, whereas echocardiographic biventricular function during vaECMO support was not.

9.
Respir Res ; 24(1): 230, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752522

ABSTRACT

BACKGROUND: Venovenous extracorporeal membrane oxygenation (vvECMO) is used to treat hypoxia in patients with severe acute respiratory distress syndrome (ARDS). Nevertheless, uncertainty exists regarding the optimal timing of initiation of vvECMO therapy. We aimed to investigate the association between number of days of invasive mechanical ventilation (IMV) prior to vvECMO implantation and mortality. METHODS: In this retrospective observational study, we included patients treated at an academic intensive care unit with vvECMO for severe ARDS. The primary outcome was all-cause 28-day mortality. We conducted a multivariate logistic regression analysis to estimate the association between number of days of IMV prior to vvECMO implantation and mortality after adjustment for confounders. RESULTS: Out of 274 patients who underwent ECMO for severe ARDS, 158 patients (median age: 58 years) with relevant data were included in the analysis. The mean duration of IMV prior to vvECMO was significantly shorter in survivors than in nonsurvivors [survivors median: 1; interquartile range: 1-3; non-survivors median 4; interquartile range: 1-5.75; p = 0.0001). Logistic regression showed an association between the duration of ventilation prior to vvECMO and patient mortality. The odds ratio for the all-cause 28-day mortality and in-hospital mortality was significantly reduced in patients who received vvECMO within the first 5 days of IMV. CONCLUSIONS: Early vvECMO implantation may be associated with lower mortality in ARDS.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Middle Aged , Hospital Mortality , Respiration, Artificial , Retrospective Studies , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/etiology
10.
Crit Care Explor ; 5(8): e0961, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37614799

ABSTRACT

OBJECTIVES: To determine the feasibility, safety, and efficacy of a biomarker-guided implementation of a kidney-sparing sepsis bundle (KSSB) of care in comparison with standard of care (SOC) on clinical outcomes in patients with sepsis. DESIGN: Adaptive, multicenter, randomized clinical trial. SETTING: Five University Hospitals in Europe and North America. PATIENTS: Adult patients, admitted to the ICU with an indwelling urinary catheter and diagnosis of sepsis or septic shock, without acute kidney injury (acute kidney injury) stage 2 or 3 or chronic kidney disease. INTERVENTIONS: A three-level KSSB based on Kidney Disease: Improving Global Outcomes (KDIGOs) recommendations guided by serial measurements of urinary tissue inhibitor of metalloproteinases-2 and insulin-like growth factor-binding protein 7 used as a combined biomarker [TIMP2]•[IGFBP7]. MEASUREMENTS AND MAIN RESULTS: The trial was stopped for low enrollment related to the COVID-19 pandemic. Nineteen patients enrolled in five sites over 12 months were randomized to the SOC (n = 8, 42.0%) or intervention (n = 11, 58.0%). The primary outcome was feasibility, and key secondary outcomes were safety and efficacy. Adherence to protocol in patients assigned to the first two levels of KSSB was 15 of 19 (81.8%) and 19 of 19 (100%) but was 1 of 4 (25%) for level 3 KSSB. Serious adverse events were more frequent in the intervention arm (4/11, 36.4%) than in the control arm (1/8, 12.5%), but none were related to study interventions. The secondary efficacy outcome was a composite of death, dialysis, or progression of greater than or equal to 2 stages of acute kidney injury within 72 hours after enrollment and was reached by 3 of 8 (37.5%) patients in the control arm, and 0 of 11 (0%) patients in the intervention arm. In the control arm, two patients experienced progression of acute kidney injury, and one patient died. CONCLUSIONS: Although the COVID-19 pandemic impeded recruitment, the actual implementation of a therapeutic strategy that deploys a KDIGO-based KSSB of care guided by risk stratification using urinary [TIMP2]•[IGFBP7] seems feasible and appears to be safe in patients with sepsis.

11.
Front Immunol ; 14: 1206906, 2023.
Article in English | MEDLINE | ID: mdl-37398659

ABSTRACT

Platelets are anucleate blood cells derived from megakaryocytes. They link the fundamental functions of hemostasis, inflammation and host defense. They undergo intracellular calcium flux, negatively charged phospholipid translocation, granule release and shape change to adhere to collagen, fibrin and each other, forming aggregates, which are key to several of their functions. In all these dynamic processes, the cytoskeleton plays a crucial role. Neuronal guidance proteins (NGPs) form attractive and repulsive signals to drive neuronal axon navigation and thus refine neuronal circuits. By binding to their target receptors, NGPs rearrange the cytoskeleton to mediate neuron motility. In recent decades, evidence has indicated that NGPs perform important immunomodulatory functions and influence platelet function. In this review, we highlight the roles of NGPs in platelet formation and activation.


Subject(s)
Axon Guidance , Blood Platelets , Humans , Blood Platelets/metabolism , Hemostasis , Megakaryocytes/metabolism , Inflammation/metabolism
12.
Blood ; 142(17): 1463-1477, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37441848

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality. Excessive neutrophil infiltration into the pulmonary airspace is the main cause for the acute inflammation and lung injury. Platelets have been implicated in the pathogenesis of ALI/ARDS, but the underlying mechanisms are not fully understood. Here, we show that the immunoreceptor tyrosine-based activation motif-coupled immunoglobulin-like platelet receptor, glycoprotein VI (GPVI), plays a key role in the early phase of pulmonary thrombo-inflammation in a model of lipopolysaccharide (LPS)-induced ALI in mice. In wild-type (WT) control mice, intranasal LPS application triggered severe pulmonary and blood neutrophilia, hypothermia, and increased blood lactate levels. In contrast, GPVI-deficient mice as well as anti-GPVI-treated WT mice were markedly protected from pulmonary and systemic compromises and showed no increased pulmonary bleeding. High-resolution multicolor microscopy of lung sections and intravital confocal microcopy of the ventilated lung revealed that anti-GPVI treatment resulted in less stable platelet interactions with neutrophils and overall reduced platelet-neutrophil complex (PNC) formation. Anti-GPVI treatment also reduced neutrophil crawling and adhesion on endothelial cells, resulting in reduced neutrophil transmigration and alveolar infiltrates. Remarkably, neutrophil activation was also diminished in anti-GPVI-treated animals, associated with strongly reduced formation of PNC clusters and neutrophil extracellular traps (NETs) compared with that in control mice. These results establish GPVI as a key mediator of neutrophil recruitment, PNC formation, and NET formation (ie, NETosis) in experimental ALI. Thus, GPVI inhibition might be a promising strategy to reduce the acute pulmonary inflammation that causes ALI/ARDS.


Subject(s)
Acute Lung Injury , Pneumonia , Respiratory Distress Syndrome , Animals , Mice , Acute Lung Injury/pathology , Endothelial Cells/pathology , Inflammation/pathology , Lipopolysaccharides/adverse effects , Lung/pathology , Neutrophil Infiltration , Neutrophils/pathology , Pneumonia/pathology , Respiratory Distress Syndrome/pathology
13.
Intensive Care Med ; 49(12): 1441-1455, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37505258

ABSTRACT

PURPOSE: The incidence, patient features, risk factors and outcomes of surgery-associated postoperative acute kidney injury (PO-AKI) across different countries and health care systems is unclear. METHODS: We conducted an international prospective, observational, multi-center study in 30 countries in patients undergoing major surgery (> 2-h duration and postoperative intensive care unit (ICU) or high dependency unit admission). The primary endpoint was the occurrence of PO-AKI within 72 h of surgery defined by the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Secondary endpoints included PO-AKI severity and duration, use of renal replacement therapy (RRT), mortality, and ICU and hospital length of stay. RESULTS: We studied 10,568 patients and 1945 (18.4%) developed PO-AKI (1236 (63.5%) KDIGO stage 1500 (25.7%) KDIGO stage 2209 (10.7%) KDIGO stage 3). In 33.8% PO-AKI was persistent, and 170/1945 (8.7%) of patients with PO-AKI received RRT in the ICU. Patients with PO-AKI had greater ICU (6.3% vs. 0.7%) and hospital (8.6% vs. 1.4%) mortality, and longer ICU (median 2 (Q1-Q3, 1-3) days vs. 3 (Q1-Q3, 1-6) days) and hospital length of stay (median 14 (Q1-Q3, 9-24) days vs. 10 (Q1-Q3, 7-17) days). Risk factors for PO-AKI included older age, comorbidities (hypertension, diabetes, chronic kidney disease), type, duration and urgency of surgery as well as intraoperative vasopressors, and aminoglycosides administration. CONCLUSION: In a comprehensive multinational study, approximately one in five patients develop PO-AKI after major surgery. Increasing severity of PO-AKI is associated with a progressive increase in adverse outcomes. Our findings indicate that PO-AKI represents a significant burden for health care worldwide.


Subject(s)
Acute Kidney Injury , Intensive Care Units , Humans , Prospective Studies , Renal Replacement Therapy/adverse effects , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Risk Factors
14.
J Med Internet Res ; 25: e44042, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37318826

ABSTRACT

BACKGROUND: In cases of terrorism, disasters, or mass casualty incidents, far-reaching life-and-death decisions about prioritizing patients are currently made using triage algorithms that focus solely on the patient's current health status rather than their prognosis, thus leaving a fatal gap of patients who are under- or overtriaged. OBJECTIVE: The aim of this proof-of-concept study is to demonstrate a novel approach for triage that no longer classifies patients into triage categories but ranks their urgency according to the anticipated survival time without intervention. Using this approach, we aim to improve the prioritization of casualties by respecting individual injury patterns and vital signs, survival likelihoods, and the availability of rescue resources. METHODS: We designed a mathematical model that allows dynamic simulation of the time course of a patient's vital parameters, depending on individual baseline vital signs and injury severity. The 2 variables were integrated using the well-established Revised Trauma Score (RTS) and the New Injury Severity Score (NISS). An artificial patient database of unique patients with trauma (N=82,277) was then generated and used for analysis of the time course modeling and triage classification. Comparative performance analysis of different triage algorithms was performed. In addition, we applied a sophisticated, state-of-the-art clustering method using the Gower distance to visualize patient cohorts at risk for mistriage. RESULTS: The proposed triage algorithm realistically modeled the time course of a patient's life, depending on injury severity and current vital parameters. Different casualties were ranked by their anticipated time course, reflecting their priority for treatment. Regarding the identification of patients at risk for mistriage, the model outperformed the Simple Triage And Rapid Treatment's triage algorithm but also exclusive stratification by the RTS or the NISS. Multidimensional analysis separated patients with similar patterns of injuries and vital parameters into clusters with different triage classifications. In this large-scale analysis, our algorithm confirmed the previously mentioned conclusions during simulation and descriptive analysis and underlined the significance of this novel approach to triage. CONCLUSIONS: The findings of this study suggest the feasibility and relevance of our model, which is unique in terms of its ranking system, prognosis outline, and time course anticipation. The proposed triage-ranking algorithm could offer an innovative triage method with a wide range of applications in prehospital, disaster, and emergency medicine, as well as simulation and research.


Subject(s)
Emergency Medical Services , Triage , Humans , Triage/methods , Computer Simulation , Models, Theoretical , Algorithms
15.
Article in German | MEDLINE | ID: mdl-37385240
16.
Antibiotics (Basel) ; 12(5)2023 May 13.
Article in English | MEDLINE | ID: mdl-37237807

ABSTRACT

Daptomycin is a cyclic lipopeptide antibiotic with bactericidal effects against multidrug-resistant Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). For critically ill patients, especially in the presence of implants, daptomycin is an important therapeutic option. Left ventricle assist devices (LVADs) can be utilized for intensive care patients with end-stage heart failure as a bridge to transplant. We conducted a single-center prospective trial with critically ill adults with LVAD who received prophylactic anti-infective therapy with daptomycin. Our study aimed to evaluate the pharmacokinetics of daptomycin in the blood serum and wound fluids after LVAD implantation. Daptomycin concentration were assessed over three days using high-performance liquid chromatography (HPLC). We detected a high correlation between blood serum and wound fluid daptomycin concentration at 12 h (IC95%: 0.64 to 0.95; r = 0.86; p < 0.001) and 24 h (IC95%: -0.38 to 0.92; r = 0.76; p < 0.001) after antibiotic administration. Our pilot clinical study provides new insights into the pharmacokinetics of daptomycin from the blood into wound fluids of critically ill patients with LVADs.

17.
Article in English | MEDLINE | ID: mdl-37171901

ABSTRACT

OBJECTIVES: Whole-body perfusion is the combination of lower body perfusion and antegrade cerebral perfusion. This perfusion technique is used in some centres when performing aortic arch reconstruction surgery in neonates and infants. Several studies have shown intra- and postoperative benefits of this technique. However, no studies have analysed the impact it may have on the transfusion of blood products and coagulation factors. METHODS: We retrospectively analysed 65 consecutive neonates and infants who underwent aortic arch reconstruction surgery from January 2014 to July 2020. Patients operated from 2014 to 2017 underwent surgery with antegrade cerebral perfusion; in patients who underwent surgery from 2017 to 2020 a whole-body perfusion strategy was used. Demographic, intra- and postoperative parameters were compared as well as intraoperative blood product and coagulation factor transfusions, chest-tube output in the first 24 h and postoperative bleeding complications. RESULTS: Both groups required intraoperative transfusion of red blood cells, fresh frozen plasma, and platelets, as well as substitution of coagulation factors. The amount of transfused volumes of red blood cells, fresh frozen plasma and platelets (P-values 0.01, <0.01 and <0.01) and intraoperative transfusions of fibrinogen and von Willebrand factor were significantly lower in the whole-body perfusion group (P-value 0.04 and <0.01). CONCLUSIONS: A whole-body perfusion strategy may lead to fewer intraoperative blood product and coagulation factor transfusions when compared to antegrade cerebral perfusion alone in neonates and infants undergoing complex aortic arch reconstruction surgery.

18.
Lab Invest ; 103(8): 100179, 2023 08.
Article in English | MEDLINE | ID: mdl-37224922

ABSTRACT

In critically ill patients infected with SARS-CoV-2, early leukocyte recruitment to the respiratory system was found to be orchestrated by leukocyte trafficking molecules accompanied by massive secretion of proinflammatory cytokines and hypercoagulability. Our study aimed to explore the interplay between leukocyte activation and pulmonary endothelium in different disease stages of fatal COVID-19. Our study comprised 10 COVID-19 postmortem lung specimens and 20 control lung samples (5 acute respiratory distress syndrome, 2 viral pneumonia, 3 bacterial pneumonia, and 10 normal), which were stained for antigens representing the different steps of leukocyte migration: E-selectin, P-selectin, PSGL-1, ICAM1, VCAM1, and CD11b. Image analysis software QuPath was used for quantification of positive leukocytes (PSGL-1 and CD11b) and endothelium (E-selectin, P-selectin, ICAM1, VCAM1). Expression of IL-6 and IL-1ß was quantified by RT-qPCR. Expression of P-selectin and PSGL-1 was strongly increased in the COVID-19 cohort compared with all control groups (COVID-19:Controls, 17:23, P < .0001; COVID-19:Controls, 2:75, P < .0001, respectively). Importantly, P-selectin was found in endothelial cells and associated with aggregates of activated platelets adherent to the endothelial surface in COVID-19 cases. In addition, PSGL-1 staining disclosed positive perivascular leukocyte cuffs, reflecting capillaritis. Moreover, CD11b showed a strongly increased positivity in COVID-19 compared with all controls (COVID-19:Controls, 2:89; P = .0002), indicating a proinflammatory immune microenvironment. Of note, CD11b exhibited distinct staining patterns at different stages of COVID-19 disease. Only in cases with very short disease course, high levels of IL-1ß and IL-6 mRNA were observed in lung tissue. The striking upregulation of PSGL-1 and P-selectin reflects the activation of this receptor-ligand pair in COVID-19, increasing the efficiency of initial leukocyte recruitment, thus promoting tissue damage and immunothrombosis. Our results show that endothelial activation and unbalanced leukocyte migration play a central role in COVID-19 involving the P-selectin-PSGL-1 axis.


Subject(s)
COVID-19 , P-Selectin , Humans , P-Selectin/genetics , P-Selectin/metabolism , Blood Platelets/metabolism , Endothelial Cells/metabolism , Interleukin-6/metabolism , SARS-CoV-2 , Leukocytes/metabolism , Endothelium/metabolism
19.
Diagnostics (Basel) ; 13(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36899983

ABSTRACT

In critically ill patients, hemodynamic disturbances are common and often lead to a detrimental outcome. Frequently, invasive hemodynamic monitoring is required for patients who are hemodynamically unstable. Although the pulmonary artery catheter enables a comprehensive assessment of the hemodynamic profile, this technique carries a substantial inherent risk of complications. Other less invasive techniques do not offer a full range of results to guide detailed hemodynamic therapies. An alternative with a lower risk profile is transthoracic echocardiography (TTE) or transesophageal echocardiography (TEE). After training, intensivists can obtain similar parameters on the hemodynamic profile using echocardiography, such as stroke volume and ejection fraction of the right and left ventricles, an estimate of the pulmonary artery wedge pressure, and cardiac output. Here, we will review individual echocardiography techniques that will help the intensivist obtain a comprehensive assessment of the hemodynamic profile using echocardiography.

20.
Diagnostics (Basel) ; 13(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36900100

ABSTRACT

BACKGROUND: Left atrioventricular valve (LAVV) stenosis following an atrioventricular septal defect (AVSD) repair is a rare but potentially life-threatening complication. While echocardiographic quantification of diastolic transvalvular pressure gradients is paramount in the evaluation of a newly corrected valve function, it is hypothesized that these measured gradients are overestimated immediately following a cardiopulmonary bypass (CPB) due to the altered hemodynamics when compared to postoperative valve assessments using awake transthoracic echocardiography (TTE) upon recovery after surgery. METHODS: Out of the 72 patients screened for inclusion at a tertiary center, 39 patients undergoing an AVSD repair with both intraoperative transesophageal echocardiograms (TEE, performed immediately after a CPB) and an awake TTE (performed prior to hospital discharge) were retrospectively selected. The mean (MPGs) and peak pressure gradients (PPGs) were quantified using a Doppler echocardiography and other measures of interest were recorded (e.g., a non-invasive surrogate of the cardiac output and index (CI), left ventricular ejection fraction, blood pressures and airway pressures). The variables were analyzed using the paired Student's t-tests and Spearman's correlation coefficients. RESULTS: The MPGs were significantly higher in the intraoperative measurements when compared to the awake TTE (3.0 ± 1.2 vs. 2.3 ± 1.1 mmHg; p < 0.01); however, the PPGs did not significantly differ (6.6 ± 2.7 vs. 5.7 ± 2.8 mmHg; p = 0.06). Although the assessed intraoperative heart rates (HRs) were also higher (132 ± 17 vs. 114 ± 21 bpm; p < 0.001), there was no correlation found between the MPG and the HR, or any other parameter of interest, at either time-point. In a further analysis, a moderate to strong correlation was observed in the linear relationship between the CI and the MPG (r = 0.60; p < 0.001). During the in-hospital follow-up period, no patients died or required an intervention due to LAVV stenosis. CONCLUSIONS: The Doppler-based quantification of diastolic transvalvular LAVV mean pressure gradients using intraoperative transesophageal echocardiography seems to be prone to overestimation due to altered hemodynamics immediately after an AVSD repair. Thus, the current hemodynamic state should be taken into consideration during the intraoperative interpretation of these gradients.

SELECTION OF CITATIONS
SEARCH DETAIL
...