Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731963

ABSTRACT

Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 µM) and CaV3.3 (IC50 = 0.49 µM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.


Subject(s)
Calcium Channels, T-Type , Disease Models, Animal , Hyperalgesia , Pain, Postoperative , Scorpion Venoms , Animals , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/chemistry , Mice , Scorpion Venoms/chemistry , Scorpion Venoms/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Pain, Postoperative/drug therapy , Pain, Postoperative/metabolism , Calcium/metabolism , Male , Humans , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/chemistry
2.
J Am Chem Soc ; 145(37): 20242-20247, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37439676

ABSTRACT

Peptides and peptidomimetics are attractive drug candidates because of their high target specificity and low-toxicity profiles. Developing peptidomimetics using hydrocarbon (HC)-stapling or other stapling strategies has gained momentum because of their high stability and resistance to proteases; however, they have limitations. Here, we take advantage of the α-methyl group and an aromatic phenyl ring in a unique unnatural amino acid, α-methyl-l-phenylalanine (αF), and propose a novel, noncovalent stapling strategy to stabilize peptides. We utilized this strategy to create an α-helical B-chain mimetic of a complex insulin-like peptide, human relaxin-3 (H3 relaxin). Our comprehensive data set (in vitro, ex vivo, and in vivo) confirmed that the new high-yielding B-chain mimetic, H3B10-27(13/17αF), is remarkably stable in serum and fully mimics the biological function of H3 relaxin. H3B10-27(13/17αF) is an excellent scaffold for further development as a drug lead and an important tool to decipher the physiological functions of the neuropeptide G protein-coupled receptor, RXFP3.


Subject(s)
Peptidomimetics , Relaxin , Humans , Relaxin/chemistry , Relaxin/metabolism , Receptors, G-Protein-Coupled/chemistry , Protein Conformation, alpha-Helical , Phenylalanine
3.
ACS Cent Sci ; 9(4): 648-656, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37122474

ABSTRACT

Advances in the modulation of protein-protein interactions (PPIs) enable both characterization of PPI networks that govern diseases and design of therapeutics and probes. The shallow protein surfaces that dominate PPIs are challenging to target using standard methods, and approaches for accessing extended backbone structures are limited. Here, we incorporate a rigid, linear, diyne brace between side chains at the i to i+2 positions to generate a family of low-molecular-weight, extended-backbone peptide macrocycles. NMR and density functional theory studies show that these stretched peptides adopt stable, rigid conformations in solution and can be tuned to explore extended peptide conformational space. The diyne brace is formed in excellent conversions (>95%) and amenable to high-throughput synthesis. The minimalist structure-inducing tripeptide core (<300 Da) is amenable to further synthetic elaboration. Diyne-braced inhibitors of bacterial type 1 signal peptidase demonstrate the utility of the technique.

4.
Molecules ; 27(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36235117

ABSTRACT

The protein HFE (homeostatic iron regulator) is a key regulator of iron metabolism, and mutations in HFE underlie the most frequent form of hereditary haemochromatosis (HH-type I). Studies have shown that HFE interacts with transferrin receptor 1 (TFR1), a homodimeric type II transmembrane glycoprotein that is responsible for the cellular uptake of iron via iron-loaded transferrin (holo-transferrin) binding. It has been hypothesised that the HFE/TFR1 interaction serves as a sensor to the level of iron-loaded transferrin in circulation by means of a competition mechanism between HFE and iron-loaded transferrin association with TFR1. To investigate this, a series of peptides based on the helical binding interface between HFE and TFR1 were generated and shown to significantly interfere with the HFE/TFR1 interaction in an in vitro proximity ligation assay. The helical conformation of one of these peptides, corresponding to the α1 and α2 helices of HFE, was stabilised by the introduction of sidechain lactam "staples", but this did not result in an increase in the ability of the peptide to disrupt the HFE/TFR1 interaction. These peptides inhibitors of the protein-protein interaction between HFE and TFR1 are potentially useful tools for the analysis of the functional role of HFE in the regulation of hepcidin expression.


Subject(s)
Hemochromatosis , Hepcidins , Hemochromatosis/genetics , Hemochromatosis/metabolism , Hemochromatosis Protein/genetics , Hemochromatosis Protein/metabolism , Hepcidins/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Iron/metabolism , Lactams , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peptides/metabolism , Peptides/pharmacology , Receptors, Transferrin/metabolism , Transferrin/metabolism
5.
Chempluschem ; 87(1): e202100408, 2022 01.
Article in English | MEDLINE | ID: mdl-35032115

ABSTRACT

Secondary structure changes are an inherent part of antimicrobial (AMP) and amyloidogenic peptide activity, especially in close proximity to membranes, and impact the peptides' function and dysfunction roles. The formation, and stability of α-helical components are regarded as essential 'intermediates' for both these functions. To illuminate the conformational transitions leading to amyloid formation we use short cationic AMPs, from an Australian toadlet, Uperoleia mjobergii, (Uperin 3 family, U3) and assess the impact on secondary structural elements in the presence of a membrane mimetic surfactant, sodium dodecyl sulfate (SDS). Specifically, Uperin 3.x, where x=4, 5, 6 wild-type peptides and position seven variants for each, R7A or K7A, were investigated using a combination of experimental and simulation approaches. In water, U3 peptides remain largely unstructured as random coils, with the addition of salts initiating structural transitions leading to assembly towards amyloid. Solution NMR data show that an unstructured U3.5 wt peptide transitions in the presence of SDS to a well-defined α-helical structure that spans nearly the entire sequence. Circular dichroism (CD) and ThT fluorescence studies show that all six U3 peptides aggregate in solution, albeit with vastly varying rates, and a dynamic equilibrium between soluble aggregates rich in either α-helices or ß-sheets may exist in solution. However, the addition of SDS leads to a rapid disaggregation for all peptides and stabilisation of predominantly α-helical content in all the U3 peptides. Molecular dynamics (MD) simulations show that the adsorption of U3.5 wt/R7A peptides onto the SDS micelle is driven by Coulombic attraction between peptide cationic residues and the negatively charged sulfate head-groups on SDS. Simulating the interactions of various kinds of ß-sheet dimers (of both U3.5 wt and its variant U3.5 R7A) with SDS micelles confirmed ß-sheet content decreases in the dimers after their attachment to the SDS micelle. Adsorbed peptides interact favourably with the hydrophobic core of the micelle, promoting intramolecular hydrogen bonds leading to stabilisation of the α-helical structure in peptides, and resulting in a corresponding decrease in intermolecular hydrogen bonds responsible for ß-sheets.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Australia , Peptides , Sodium Dodecyl Sulfate
6.
ACS Pharmacol Transl Sci ; 4(6): 1808-1817, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34927012

ABSTRACT

The complement activation peptide C5a is a key mediator of inflammation that is associated with numerous immune disorders. C5a binds and activates two seven-transmembrane receptors, C5aR1 and C5aR2. Experimentally, C5a is utilized to investigate C5a receptor biology and to screen for potential C5aR1/C5aR2 therapeutics. Currently, laboratory sources of C5a stem from either isolation of endogenous C5a from human serum or most predominantly via recombinant expression. An alternative approach to C5a production is chemical synthesis, which has several advantages, including the ability to introduce non-natural amino acids and site-specific modifications whilst also maintaining a lower probability of C5a being contaminated with microbial molecules or other endogenous proteins. Here, we describe the efficient synthesis of both human (hC5a) and mouse C5a (mC5a) without the need for ligation chemistry. We validate the synthetic peptides by comparing pERK1/2 signaling in CHO-hC5aR1 cells and primary human macrophages (for hC5a) and in RAW264.7 cells (for mC5a). C5aR2 activation was confirmed by measuring ß-arrestin recruitment in C5aR2-transfected HEK293 cells. We also demonstrate the functionalization of synthetic C5a through the introduction of a lanthanide chelating cage to facilitate a screen for the binding of ligands to C5aR1. Finally, we verify that the synthetic ligands are functionally similar to recombinant or native C5a by assessing hC5a-induced neutrophil chemotaxis in vitro and mC5a-mediated neutrophil mobilization in vivo. We propose that the synthetic hC5a and mC5a described herein are valuable alternatives to recombinant or purified C5a for in vitro and in vivo applications and add to the growing complement reagent toolbox.

7.
J Nat Prod ; 84(12): 3138-3146, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34874154

ABSTRACT

Natural product discovery by isolation and structure elucidation is a laborious task often requiring ample quantities of biological starting material and frequently resulting in the rediscovery of previously known compounds. However, peptides are a compound class amenable to an alternative genomic, transcriptomic, and in silico discovery route by similarity searches of known peptide sequences against sequencing data. Based on the sequences of barrettides A and B, we identified five new barrettide sequences (barrettides C-G) predicted from the North Atlantic deep-sea demosponge Geodia barretti (Geodiidae). We synthesized, folded, and investigated one of the newly described barrettides, barrettide C (NVVPCFCVEDETSGAKTCIPDNCDASRGTNP, disulfide connectivity I-IV, II-III). Co-elution experiments of synthetic and sponge-derived barrettide C confirmed its native conformation. NMR spectroscopy and the anti-biofouling activity on larval settlement of the bay barnacle Amphibalanus improvisus (IC50 0.64 µM) show that barrettide C is highly similar to barrettides A and B in both structure and function. Several lines of evidence suggest that barrettides are produced by the sponge itself and not one of its microbial symbionts.


Subject(s)
Geodia/metabolism , Peptides/metabolism , Animals , Ecosystem , Peptides/chemistry , Seawater
8.
RSC Med Chem ; 12(9): 1574-1584, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34671739

ABSTRACT

Conotoxins are peptides found in the venoms of marine cone snails. They are typically highly structured and stable and have potent activities at nicotinic acetylcholine receptors, which make them valuable research tools and promising lead molecules for drug development. Many conotoxins are also highly modified with posttranslational modifications such as proline hydroxylation, glutamic acid gamma-carboxylation, tyrosine sulfation and C-terminal amidation, amongst others. The role of these posttranslational modifications is poorly understood, and it is unclear whether the modifications interact directly with the binding site, alter conotoxin structure, or both. Here we synthesised a set of twelve conotoxin variants bearing posttranslational modifications in the form of native sulfotyrosine and C-terminal amidation and show that these two modifications in combination increase their activity at nicotinic acetylcholine receptors and binding to soluble acetylcholine binding proteins, respectively. We then rationalise how these functional differences between variants might arise from stabilization of the three-dimensional structures and interactions with the binding sites, using high-resolution nuclear magnetic resonance data. This study demonstrates that posttranslational modifications can modulate interactions between a ligand and receptor by a combination of structural and binding alterations. A deeper mechanistic understanding of the role of posttranslational modifications in structure-activity relationships is essential for understanding receptor biology and could help to guide structure-based drug design.

9.
J Nat Prod ; 84(11): 2914-2922, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34672199

ABSTRACT

Plants are an excellent source of bioactive peptides, often with disulfide bonds and/or a cyclic backbone. While focus has predominantly been directed at disulfide-rich peptides, a large family of small, cyclic plant peptides lacking disulfide bonds, known as orbitides, has been relatively ignored. A recently discovered subfamily of orbitides is the PawL-derived peptides (PLPs), produced during the maturation of precursors for seed storage albumins. Although their evolutionary origins have been dated, in-depth exploration of the family's structural characteristics and potential bioactivities remains to be conducted. Here we present an extensive and systematic characterization of the PLP family. Nine PLPs were chosen and prepared by solid phase peptide synthesis. Their structural features were studied using solution NMR spectroscopy, and seven were found to possess regions of backbone order. Ordered regions consist of ß-turns, with some PLPs adopting two well-defined ß-turns within sequences as short as seven residues, which are largely the result of side chain interactions. Our data highlight that the sequence diversity within this family results in equally diverse structures. None of these nine PLPs showed antibacterial or antifungal activity.


Subject(s)
Peptides, Cyclic/chemistry , Anti-Infective Agents/pharmacology , Magnetic Resonance Spectroscopy , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/isolation & purification , Peptides, Cyclic/pharmacology , Solid-Phase Synthesis Techniques
10.
Commun Biol ; 4(1): 1024, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471213

ABSTRACT

It is now widely accepted that the first eukaryotic cell emerged from a merger of an archaeal host cell and an alphaproteobacterium. However, the exact sequence of events and the nature of the cellular biology of both partner cells is still contentious. Recently the structures of profilins from some members of the newly discovered Asgard superphylum were determined. In addition, it was found that these profilins inhibit eukaryotic rabbit actin polymerization and that this reaction is regulated by phospholipids. However, the interaction with polyproline repeats which are known to be crucial for the regulation of profilin:actin polymerization was found to be absent for these profilins and was thus suggested to have evolved later in the eukaryotic lineage. Here, we show that Heimdallarchaeota LC3, a candidate phylum within the Asgard superphylum, encodes a putative profilin (heimProfilin) that interacts with PIP2 and its binding is regulated by polyproline motifs, suggesting an origin predating the rise of the eukaryotes. More precisely, we determined the 3D-structure of Heimdallarchaeota LC3 profilin and show that this profilin is able to: i) inhibit eukaryotic actin polymerization in vitro; ii) bind to phospholipids; iii) bind to polyproline repeats from enabled/vasodilator-stimulated phosphoprotein; iv) inhibit actin from Heimdallarchaeota from polymerizing into filaments. Our results therefore provide hints of the existence of a complex cytoskeleton already in last eukaryotic common ancestor.


Subject(s)
Actins/metabolism , Archaea/genetics , Peptides/metabolism , Profilins/genetics , Archaea/metabolism , Profilins/metabolism , Protein Binding
11.
RSC Chem Biol ; 2(2): 537-550, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34458797

ABSTRACT

Interactions between histones, which package DNA in eukaryotes, and nuclear proteins such as the high mobility group nucleosome-binding protein HMGN1 are important for regulating access to DNA. HMGN1 is a highly charged and intrinsically disordered protein (IDP) that is modified at several sites by posttranslational modifications (PTMs) - acetylation, phosphorylation and ADP-ribosylation. These PTMs are thought to affect cellular localisation of HMGN1 and its ability to bind nucleosomes; however, little is known about how these PTMs regulate the structure and function of HMGN1 at a molecular level. Here, we combine the chemical biology tools of protein semi-synthesis and site-specific modification to generate a series of unique HMGN1 variants bearing precise PTMs at their N- or C-termini with segmental isotope labelling for NMR spectroscopy. With access to these precisely-defined variants, we show that PTMs in both the N- and C-termini cause changes in the chemical shifts and conformational populations in regions distant from the PTM sites; up to 50-60 residues upstream of the PTM site. The PTMs investigated had only minor effects on binding of HMGN1 to nucleosome core particles, suggesting that they have other regulatory roles. This study demonstrates the power of combining protein semi-synthesis for introduction of site-specific PTMs with segmental isotope labelling for structural biology, allowing us to understand the role of PTMs with atomic precision, from both structural and functional perspectives.

12.
J Biol Chem ; 297(1): 100834, 2021 07.
Article in English | MEDLINE | ID: mdl-34051231

ABSTRACT

The prevalence of autoimmune diseases is on the rise globally. Currently, autoimmunity presents in over 100 different forms and affects around 9% of the world's population. Current treatments available for autoimmune diseases are inadequate, expensive, and tend to focus on symptom management rather than cure. Clinical trials have shown that live helminthic therapy can decrease chronic inflammation associated with inflammatory bowel disease and other gastrointestinal autoimmune inflammatory conditions. As an alternative and better controlled approach to live infection, we have identified and characterized two peptides, Acan1 and Nak1, from the excretory/secretory component of parasitic hookworms for their therapeutic activity on experimental colitis. We synthesized Acan1 and Nak1 peptides from the Ancylostoma caninum and Necator americanus hookworms and assessed their structures and protective properties in human cell-based assays and in a mouse model of acute colitis. Acan1 and Nak1 displayed anticolitic properties via significantly reducing weight loss and colon atrophy, edema, ulceration, and necrosis in 2,4,6-trinitrobenzene sulfonic acid-exposed mice. These hookworm peptides prevented mucosal loss of goblet cells and preserved intestinal architecture. Acan1 upregulated genes responsible for the repair and restitution of ulcerated epithelium, whereas Nak1 downregulated genes responsible for epithelial cell migration and apoptotic cell signaling within the colon. These peptides were nontoxic and displayed key immunomodulatory functions in human peripheral blood mononuclear cells by suppressing CD4+ T cell proliferation and inhibiting IL-2 and TNF production. We conclude that Acan1 and Nak1 warrant further development as therapeutics for the treatment of autoimmunity, particularly gastrointestinal inflammatory conditions.


Subject(s)
Ancylostomatoidea/chemistry , Colitis/drug therapy , Colitis/prevention & control , Leukocytes/immunology , Peptides/therapeutic use , Amino Acid Sequence , Ancylostoma , Animals , Cell Proliferation/drug effects , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Inflammation Mediators/metabolism , Intestines/pathology , Kv1.3 Potassium Channel/antagonists & inhibitors , Kv1.3 Potassium Channel/metabolism , Leukocytes/drug effects , Magnetic Resonance Spectroscopy , Male , Mice, Inbred C57BL , Necator americanus , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Principal Component Analysis , Protein Domains , Protein Folding , T-Lymphocytes/cytology , Trinitrobenzenesulfonic Acid , Xenopus laevis
13.
Chem Sci ; 12(19): 6670-6683, 2021 Apr 11.
Article in English | MEDLINE | ID: mdl-34040741

ABSTRACT

Head-to-tail cyclized peptides are intriguing natural products with unusual properties. The PawS-Derived Peptides (PDPs) are ribosomally synthesized as part of precursors for seed storage albumins in species of the daisy family, and are post-translationally excised and cyclized during proteolytic processing. Here we report a PDP twice the typical size and with two disulfide bonds, identified from seeds of Zinnia elegans. In water, synthetic PDP-23 forms a unique dimeric structure in which two monomers containing two ß-hairpins cross-clasp and enclose a hydrophobic core, creating a square prism. This dimer can be split by addition of micelles or organic solvent and in monomeric form PDP-23 adopts open or closed V-shapes, exposing different levels of hydrophobicity dependent on conditions. This chameleonic character is unusual for disulfide-rich peptides and engenders PDP-23 with potential for cell delivery and accessing novel targets. We demonstrate this by conjugating a rhodamine dye to PDP-23, creating a stable, cell-penetrating inhibitor of the P-glycoprotein drug efflux pump.

14.
Mar Drugs ; 19(2)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530397

ABSTRACT

Conotoxins are disulfide-rich peptides found in the venom of cone snails. Due to their exquisite potency and high selectivity for a wide range of voltage and ligand gated ion channels they are attractive drug leads in neuropharmacology. Recently, cone snails were found to have the capability to rapidly switch between venom types with different proteome profiles in response to predatory or defensive stimuli. A novel conotoxin, GXIA (original name G117), belonging to the I3-subfamily was identified as the major component of the predatory venom of piscivorous Conus geographus. Using 2D solution NMR spectroscopy techniques, we resolved the 3D structure for GXIA, the first structure reported for the I3-subfamily and framework XI family. The 32 amino acid peptide is comprised of eight cysteine residues with the resultant disulfide connectivity forming an ICK+1 motif. With a triple stranded ß-sheet, the GXIA backbone shows striking similarity to several tarantula toxins targeting the voltage sensor of voltage gated potassium and sodium channels. Supported by an amphipathic surface, the structural evidence suggests that GXIA is able to embed in the membrane and bind to the voltage sensor domain of a putative ion channel target.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Neurotoxins/analysis , Neurotoxins/chemical synthesis , omega-Conotoxin GVIA/analysis , omega-Conotoxin GVIA/chemical synthesis , Amino Acid Sequence , Animals , Conotoxins/analysis , Conotoxins/chemical synthesis , Conotoxins/genetics , Conus Snail , Neurotoxins/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , omega-Conotoxin GVIA/genetics
15.
Int J Mol Sci ; 22(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499147

ABSTRACT

Receptor heteromerization is the formation of a complex involving at least two different receptors with pharmacology that is distinct from that exhibited by its constituent receptor units. Detection of these complexes and monitoring their pharmacology is crucial for understanding how receptors function. The Receptor-Heteromer Investigation Technology (Receptor-HIT) utilizes ligand-dependent modulation of interactions between receptors and specific biomolecules for the detection and profiling of heteromer complexes. Previously, the interacting biomolecules used in Receptor-HIT assays have been intracellular proteins, however in this study we have for the first time used bioluminescence resonance energy transfer (BRET) with fluorescently-labeled ligands to investigate heteromerization of receptors on the cell surface. Using the Receptor-HIT ligand binding assay with NanoBRET, we have successfully investigated heteromers between the angiotensin II type 1 (AT1) receptor and the ß2 adrenergic receptor (AT1-ß2AR heteromer), as well as between the AT1 and angiotensin II type 2 receptor (AT1-AT2 heteromer).


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques/methods , Ligands , Nanotechnology/methods , Receptors, Angiotensin/metabolism , Binding, Competitive , Boron Compounds/chemistry , Cell Membrane/metabolism , Cyclic AMP/metabolism , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Kinetics , Protein Binding , Protein Multimerization , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction
16.
RSC Chem Biol ; 2(6): 1682-1691, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34977583

ABSTRACT

Head-to-tail cyclic and disulfide-rich peptides are natural products with applications in drug design. Among these are the PawS-Derived Peptides (PDPs) produced in seeds of the daisy plant family. PDP-23 is a unique member of this class in that it is twice the typical size and adopts two ß-hairpins separated by a hinge region. The ß-hairpins, both stabilised by a single disulfide bond, fold together into a V-shaped tertiary structure creating a hydrophobic core. In water two PDP-23 molecules merge their hydrophobic cores to form a square prism quaternary structure. Here, we synthesised PDP-23 and its enantiomer comprising d-amino acids and achiral glycine, which allowed us to confirm these solution NMR structural data by racemic crystallography. Furthermore, we discovered the related PDP-24. NMR analysis showed that PDP-24 does not form a dimeric structure and it has poor water solubility, but in less polar solvents adopts near identical secondary and tertiary structure to PDP-23. The natural role of these peptides in plants remains enigmatic, as we did not observe any antimicrobial or insecticidal activity. However, the plasticity of these larger PDPs and their ability to change structure under different conditions make them appealing peptide drug scaffolds.

17.
Int J Mol Sci ; 22(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379211

ABSTRACT

Hemorphins are known for their role in the control of blood pressure. Recently, we revealed the positive modulation of the angiotensin II (AngII) type 1 receptor (AT1R) by LVV-hemorphin-7 (LVV-H7) in human embryonic kidney (HEK293) cells. Here, we examined the molecular binding behavior of LVV-H7 on AT1R and its effect on AngII binding using a nanoluciferase-based bioluminescence resonance energy transfer (NanoBRET) assay in HEK293FT cells, as well as molecular docking and molecular dynamics (MD) studies. Saturation and real-time kinetics supported the positive effect of LVV-H7 on the binding of AngII. While the competitive antagonist olmesartan competed with AngII binding, LVV-H7 slightly, but significantly, decreased AngII's kD by 2.6 fold with no effect on its Bmax. Molecular docking and MD simulations indicated that the binding of LVV-H7 in the intracellular region of AT1R allosterically potentiates AngII binding. LVV-H7 targets residues on intracellular loops 2 and 3 of AT1R, which are known binding sites of allosteric modulators in other GPCRs. Our data demonstrate the allosteric effect of LVV-H7 on AngII binding, which is consistent with the positive modulation of AT1R activity and signaling previously reported. This further supports the pharmacological targeting of AT1R by hemorphins, with implications in vascular and renal physiology.


Subject(s)
Angiotensin II/metabolism , Hemoglobins/metabolism , Peptide Fragments/metabolism , Receptor, Angiotensin, Type 1/metabolism , HEK293 Cells , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation
18.
J Am Chem Soc ; 142(50): 21178-21188, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33263997

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a molecular target for the sensitization of cancer cells to the FDA-approved topoisomerase inhibitors topotecan and irinotecan. High-throughput screening of natural product extract and fraction libraries for inhibitors of TDP1 activity resulted in the discovery of a new class of knotted cyclic peptides from the marine sponge Axinella sp. Bioassay-guided fractionation of the source extract resulted in the isolation of the active component which was determined to be an unprecedented 42-residue cysteine-rich peptide named recifin A. The native NMR structure revealed a novel fold comprising a four strand antiparallel ß-sheet and two helical turns stabilized by a complex disulfide bond network that creates an embedded ring around one of the strands. The resulting structure, which we have termed the Tyr-lock peptide family, is stabilized by a tyrosine residue locked into three-dimensional space. Recifin A inhibited the cleavage of phosphodiester bonds by TDP1 in a FRET assay with an IC50 of 190 nM. Enzyme kinetics studies revealed that recifin A can specifically modulate the enzymatic activity of full-length TDP1 while not affecting the activity of a truncated catalytic domain of TDP1 lacking the N-terminal regulatory domain (Δ1-147), suggesting an allosteric binding site for recifin A on the regulatory domain of TDP1. Recifin A represents both the first of a unique structural class of knotted disulfide-rich peptides and defines a previously unseen mechanism of TDP1 inhibition that could be productively exploited for potential anticancer applications.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Peptides/chemistry , Peptides/pharmacology , Phosphoric Diester Hydrolases/metabolism , Tyrosine , Allosteric Regulation/drug effects , Amino Acid Sequence , Catalytic Domain , Disulfides/chemistry , High-Throughput Screening Assays , Phosphoric Diester Hydrolases/chemistry
19.
ACS Med Chem Lett ; 11(11): 2336-2340, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33214850

ABSTRACT

The receptor for the neuropeptide relaxin 3, relaxin family peptide 3 (RXFP3) receptor, is an attractive pharmacological target for the control of eating, addictive, and psychiatric behaviors. Several structure-activity relationship studies on both human relaxin 3 (containing 3 disulfide bonds) and its analogue A2 (two disulfide bonds) suggest that the C-terminal carboxylic acid of the tryptophan residue in the B-chain is important for RXFP3 activity. In this study, we have added amide, alcohol, carbamate, and ester functionalities to the C-terminus of A2 and compared their structures and functions. As expected, the C-terminal amide form of A2 showed lower binding affinity for RXFP3 while ester and alcohol substitutions also demonstrated lower affinity. However, while these analogues showed slightly lower binding affinity, there was no significant difference in activation of RXFP3 compared to A2 bearing a C-terminal carboxylic acid, suggesting the binding pocket is able to accommodate additional atoms.

20.
Biomedicines ; 8(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066369

ABSTRACT

Relaxin-3 is a highly conserved two-chain neuropeptide that acts through its endogenous receptor the Relaxin Family Peptide-3 (RXFP3) receptor. The ligand/receptor system is known to modulate several physiological processes, with changes in food intake and anxiety-levels the most well studied in rodent models. Agonist and antagonist analogues based on the native two-chain peptide are costly to synthesise and not ideal drug leads. Since RXFP3 interacting residues are found in the relaxin B-chain only, this has been the focus of analogue development. The B-chain is unstructured without the A-chain support, but in single-chain variants structure can be induced by dicarba-based helical stapling strategies. Here we investigated whether alternative helical inducing strategies also can enhance structure and activity at RXFP3. Combinations of the helix inducing α-aminoisobutyric acid (Aib) were incorporated into the sequence of the relaxin-3 B-chain. Aib residues at positions 13, 17 and 18 partially reintroduce helicity and activity of the relaxin-3 B-chain, but other positions are generally not suited for modifications. We identify Thr21 as a putative new receptor contact residue important for RXFP3 binding. Cysteine residues were also incorporated into the sequence and cross-linked with dichloroacetone or α, α'-dibromo-m-xylene. However, in contrast to previously reported dicarba variants, neither were found to promote structure and RXFP3 activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...