Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1370826, 2024.
Article in English | MEDLINE | ID: mdl-38756724

ABSTRACT

The increasing demand for orthopedic surgeries, including joint replacements, is driven by an aging population and improved diagnosis of joint conditions. Orthopedic surgeries carry a risk of infection, especially in patients with comorbidities. The rise of antibiotic resistance exacerbates this issue, necessitating alternatives like in vitro bioengineered antimicrobial peptides (AMPs), offering broad-spectrum activity and multiple action mechanisms. This review aimed to assess the prevalence of antimicrobial potential and the yield after purification among recombinant AMP families. The antimicrobial potential was evaluated using the Minimum Inhibitory Concentration (MIC) values against the most common bacteria involved in clinical infections. This systematic review adhered to PRISMA guidelines, focusing on in vitro studies of recombinant AMPs. The search strategy was run on PubMed, Scopus and Embase up to 30th March 2023. The Population, Exposure and Outcome model was used to extract the data from studies and ToxRTool for the risk of bias analysis. This review included studies providing peptide production yield data and MIC values against pathogenic bacteria. Non-English texts, reviews, conference abstracts, books, studies focusing solely on chemical synthesis, those reporting incomplete data sets, using non-standard MIC assessment methods, or presenting MIC values as ranges rather than precise concentrations, were excluded. From 370 publications, 34 studies on AMPs were analyzed. These covered 46 AMPs across 18 families, with Defensins and Hepcidins being most common. Yields varied from 0.5 to 2,700 mg/L. AMPs were tested against 23 bacterial genera, with MIC values ranging from 0.125 to >1,152 µg/mL. Arenicins showed the highest antimicrobial activity, particularly against common orthopedic infection pathogens. However, AMP production yields varied and some AMPs demonstrated limited effectiveness against certain bacterial strains. This systematic review emphasizes the critical role of bioengineered AMPs to cope infections and antibiotic resistance. It meticulously evaluates recombinant AMPs, focusing on their antimicrobial efficacy and production yields. The review highlights that, despite the variability in AMP yields and effectiveness, Arenicins and Defensins are promising candidates for future research and clinical applications in treating antibiotic-resistant orthopedic infections. This study contributes significantly to the understanding of AMPs in healthcare, underscoring their potential in addressing the growing challenge of antibiotic resistance. Systematic review registration:https://osf.io/2uq4c/.

2.
3 Biotech ; 13(7): 243, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37346390

ABSTRACT

The 'enzyme prodrug therapy' represents a promising strategy to overcome limitations of current cancer treatments by the systemic administration of prodrugs, converted by a foreign enzyme into an active anticancer compound directly in tumor sites. One example is D-amino acid oxidase (DAAO), a dimeric flavoenzyme able to catalyze the oxidative deamination of D-amino acids with production of hydrogen peroxide, a reactive oxygen species (ROS), able to favor cancer cells death. A DAAO variant containing five aminoacidic substitutions (mDAAO) was demonstrated to possess a better therapeutic efficacy under low O2 concentration than wild-type DAAO (wtDAAO). Recently, aiming to design promising nanocarriers for DAAO, multi-walled carbon nanotubes (MWCNTs) were functionalized with polyethylene glycol (PEG) to reduce their tendency to aggregation and to improve their biocompatibility. Here, wtDAAO and mDAAO were adsorbed on PEGylated MWCNTs and their activity and cytotoxicity were tested. While PEG-MWCNTs-DAAOs have shown a higher activity than pristine MWCNTs-DAAO (independently on the DAAO variant used), PEG-MWCNTs-mDAAO showed a higher cytotoxicity than PEG-MWCNTs-wtDAAO at low O2 concentration. In order to evaluate the nanocarriers' biocompatibility, PEG-MWCNTs-DAAOs were incubated in human serum and the composition of protein corona was investigated via nLC-MS/MS, aiming to characterize both soft and hard coronas. The mDAAO variant has influenced the bio-corona composition in both number of proteins and presence of opsonins and dysopsonins: notably, the soft corona of PEG-MWCNTs-mDAAO contained less proteins and was more enriched in proteins able to inhibit the immune response than PEG-MWCNTs-wtDAAO. Considering the obtained results, the PEGylated MWCNTs conjugated with the mDAAO variant seems a promising candidate for a selective antitumor oxidative therapy: under anoxic-like conditions, this novel drug delivery system showed a remarkable cytotoxic effect controlled by the substrate addition, against different tumor cell lines, and a bio-corona composition devoted to prolong its blood circulation time, thus improving the drug's biodistribution. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03568-1.

3.
ACS Sustain Chem Eng ; 11(14): 5802, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37067892

ABSTRACT

[This corrects the article DOI: 10.1021/acssuschemeng.2c06534.].

4.
Front Microbiol ; 14: 1078382, 2023.
Article in English | MEDLINE | ID: mdl-36846806

ABSTRACT

Microbial communities inhabiting the Antarctic Ocean show psychrophilic and halophilic adaptations conferring interesting properties to the enzymes they produce, which could be exploited in biotechnology and bioremediation processes. Use of cold- and salt-tolerant enzymes allows to limit costs, reduce contaminations, and minimize pretreatment steps. Here, we report on the screening of 186 morphologically diverse microorganisms isolated from marine biofilms and water samples collected in Terra Nova Bay (Ross Sea, Antarctica) for the identification of new laccase activities. After primary screening, 13.4 and 10.8% of the isolates were identified for the ability to oxidize 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and the dye azure B, respectively. Amongst them, the marine Halomonas sp. strain M68 showed the highest activity. Production of its laccase-like activity increased six-fold when copper was added to culture medium. Enzymatic activity-guided separation coupled with mass spectrometry identified this intracellular laccase-like protein (named Ant laccase) as belonging to the copper resistance system multicopper oxidase family. Ant laccase oxidized ABTS and 2,6-dimethoxy phenol, working better at acidic pHs The enzyme showed a good thermostability, with optimal temperature in the 40-50°C range and maintaining more than 40% of its maximal activity even at 10°C. Furthermore, Ant laccase was salt- and organic solvent-tolerant, paving the way for its use in harsh conditions. To our knowledge, this is the first report concerning the characterization of a thermo- and halo-tolerant laccase isolated from a marine Antarctic bacterium.

5.
Biotechnol Appl Biochem ; 70(2): 909-918, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36189653

ABSTRACT

Chinese Hamster Ovary cells (CHO) have become the most common workhorse for the commercial production of therapeutic proteins, as well as for the production of recombinant proteins for biomedical research. The ability to grow at high density in suspension, the adaptability to serum free media, and the ease transfection and scale up, made CHO cell line highly productive and robust for large-scale production. Here, we present an optimized workflow used to successfully express and purify a number of human proteins with a yield up to 5 mg/L of culture. The entire protocol, from the synthetic gene design to the assessment of purified protein quality, can be completed in 2 weeks. The established cell culture platform has been efficiently adapted to rapidly produce the receptor-binding domain (RBD) in SARS-CoV-2 S protein, a protein required by many laboratories in 2020 to better understand the initial step of infection related to COVID-19 pandemic. An overall yield of 2 mg of high quality soluble RBD per liter of culture was obtained, a production 10-times cheaper than commercial preparations, this representing an intriguing strategy for future challenges.


Subject(s)
COVID-19 , Pandemics , Cricetinae , Animals , Humans , Cricetulus , CHO Cells , SARS-CoV-2/genetics , Recombinant Proteins , Transfection
6.
J Mater Sci Mater Med ; 34(1): 3, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36586059

ABSTRACT

Cell microencapsulation has been utilized for years as a means of cell shielding from the external environment while facilitating the transport of gases, general metabolites, and secretory bioactive molecules at once. In this light, hydrogels may support the structural integrity and functionality of encapsulated biologics whereas ensuring cell viability and function and releasing potential therapeutic factors once in situ. In this work, we describe a straightforward strategy to fabricate silk fibroin (SF) microgels (µgels) and encapsulate cells into them. SF µgels (size ≈ 200 µm) were obtained through ultrasonication-induced gelation of SF in a water-oil emulsion phase. A thorough physicochemical (SEM analysis, and FT-IR) and mechanical (microindentation tests) characterization of SF µgels were carried out to assess their nanostructure, porosity, and stiffness. SF µgels were used to encapsulate and culture L929 and primary myoblasts. Interestingly, SF µgels showed a selective release of relatively small proteins (e.g., VEGF, molecular weight, MW = 40 kDa) by the encapsulated primary myoblasts, while bigger (macro)molecules (MW = 160 kDa) were hampered to diffusing through the µgels. This article provided the groundwork to expand the use of SF hydrogels into a versatile platform for encapsulating relevant cells able to release paracrine factors potentially regulating tissue and/or organ functions, thus promoting their regeneration.


Subject(s)
Fibroins , Microgels , Fibroins/chemistry , Cell Encapsulation , Spectroscopy, Fourier Transform Infrared , Hydrogels/chemistry , Silk
7.
ChemSusChem ; 15(20): e202201782, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36198621

ABSTRACT

Invited for this month's cover is the work by Claudia Crestini and collaborators at Ca'Foscari University of Venice, Italy, and University of Insubria, Italy. The image shows the formation of low-molecular-weight compounds by the oxidative depolymerization of lignin by the laccase-Lig multienzymatic multistep system. The Research Article itself is available at 10.1002/cssc.202201147.


Subject(s)
Laccase , Lignin , Laccase/metabolism , Lignin/metabolism , Oxidation-Reduction
8.
ChemSusChem ; 15(20): e202201147, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35917230

ABSTRACT

A laccase-Lig multienzymatic multistep system for lignin depolymerization was designed and developed. Studies were performed on pristine and fractionated lignins (Kraft and Organosolv) using a specific cascade of enzymes, that is, laccases from Bacillus licheniformis and from Funalia trogii, respectively for Kraft and Organosolv lignin, followed by the Lig system from Sphingobium sp. SYK-6 (ß-etherases Lig E and Lig F, glutathione lyase Lig G). Careful elucidation of the structural modifications occurring in the residual lignins associated with the identification and quantification of the generated low-molecular-weight compounds showed that (i) the laccase-Lig system cleaves non-phenolic aryl glycerol ß-O-4 aryl ether bonds, and (ii) the overall reactivity is heavily dependent on the individual lignin structure. More specifically, samples with low phenolic/aliphatic OH groups ratio undergo net depolymerization, while an increased phenolic/aliphatic OH ratio results in the polymerization of the residual lignin irrespective of its botanical origin and isolation process.


Subject(s)
Lignin , Lyases , Lignin/chemistry , Laccase/chemistry , Glycerol , Ethers , Glutathione
9.
Mol Biotechnol ; 64(10): 1164-1176, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35467257

ABSTRACT

The oxidation therapy, based on the controlled production of Reactive Oxygen Species directly into the tumor site, was introduced as alternative antitumor approach. For this purpose, d-amino acid oxidase (DAAO) from the yeast Rhodotorula gracilis, an enzyme able to efficiently catalyze the production of hydrogen peroxide from d-amino acids, was adsorbed onto multi-walled carbon nanotubes (MWCNTs), previously functionalized with polylactic-co-glycolic acid (PLGA) or polyethylene glycol (PEG) at different degrees to reduce their toxicity, to be targeted directly into the tumor. In vitro activity and cytotoxicity assays demonstrated that DAAO-functionalized nanotubes (f-MWCNTs) produced H2O2 and induced toxic effects to selected tumor cell lines. After incubation in human plasma, the protein corona was investigated by SDS-PAGE and mass spectrometry analysis. The enzyme nanocarriers generally seemed to favor their biocompatibility, promoting the interaction with dysopsonins. Despite this, PLGA or high degree of PEGylation promoted the adsorption of immunoglobulins with a possible activation of immune response and this effect was probably due to PLGA hydrophobicity and dimensions and to the production of specific antibodies against PEG. In conclusion, the PEGylated MWCNTs at low degree seemed the most biocompatible nanocarrier for adsorbed DAAO, preserving its anticancer activity and forming a bio-corona able to reduce both defensive responses and blood clearance.


Subject(s)
Nanotubes, Carbon , Adsorption , Amino Acids , Humans , Hydrogen Peroxide , Nanotubes, Carbon/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology
10.
Biofactors ; 48(2): 384-399, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34608689

ABSTRACT

A number of approaches have been developed over the years to manage cancer, such as chemotherapy using low-molecular-mass molecules and radiotherapy. Here, enzymes can also find useful applications. Among them, oxidases have attracted attention because of their ability to produce reactive oxygen species (ROS, especially hydrogen peroxide) in tumors and potentially modulate the production of this cytotoxic compound when enzymes active on substrates present in low amounts are used, such as the d-amino acid oxidase and d-amino acid couple system. These treatments have been also developed for additional cancer treatment approaches, such as phototherapy, nutrient starvation, and metal-induced hydroxyl radical production. In addition, to improve tumor specificity and decrease undesired side effects, oxidases have been targeted by means of nanotechnologies and protein engineering (i.e., by designing chimeric proteins able to accumulate in the tumor). The most recent advances obtained by using six different oxidases (i.e., the FAD-containing enzymes glucose oxidase, d- and l-amino acid oxidases, cholesterol oxidase and xanthine oxidase, and the copper-containing amine oxidase) have been reported. Anticancer therapy based on oxidase-based ROS production has now reached maturity and can be applied in the clinic.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism
11.
Anal Chem ; 93(49): 16504-16511, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34843206

ABSTRACT

Glycine is an important biomarker in clinical analysis due to its involvement in multiple physiological processes. As such, the need for low-cost analytical tools for glycine detection is growing. As a neurotransmitter, glycine is involved in inhibitory and excitatory neurochemical transmission in the central nervous system. In this work, we present a 10 µM Pt-based electrochemical enzymatic biosensor based on the flavoenzyme glycine oxidase (GO) for localized real-time measurements of glycine. Among GO variants at position 244, the H244K variant with increased glycine turnover was selected to develop a functional biosensor. This biosensor relies on amperometric readouts and does not require additional redox mediators. The biosensor was characterized and applied for glycine detection from cells, mainly HEK 293 cells and primary rat astrocytes. We have identified an enzyme, GO H244K, with increased glycine turnover using mutagenesis but which can be developed into a functional biosensor. Noteworthy, a glycine release of 395.7 ± 123 µM from primary astrocytes was measured, which is ∼fivefold higher than glycine release from HEK 293 cells (75.4 ± 3.91 µM) using the GO H244K biosensor.


Subject(s)
Biosensing Techniques , Glycine , Amino Acid Oxidoreductases , Animals , HEK293 Cells , Humans , Rats
12.
Nanomedicine ; 36: 102424, 2021 08.
Article in English | MEDLINE | ID: mdl-34174417

ABSTRACT

In order to generate an antibody directed enzyme prodrug therapy, here we designed a chimeric protein by fusing the F8 antibody that recognizes the EDA of fibronectin (expressed on the tumor neovasculature) and an evolved variant of the ROS-generating enzyme D-amino acid oxidase (DAAO). The F8(scFv)-DAAO-Q144R recombinant protein is expressed by both CHO-S and E. coli cells. The F8(scFv)-DAAO-Q144R from E. coli cells is fully soluble, shows a high specific activity, is more thermostable in blood than the native DAAO, possesses a binding affinity for EDA well suited for efficient tumor accumulation, and localizes in tumor tissues. Notably, the F8(scFv)-DAAO-Q144R conjugate generates a stronger cytotoxicity to tumor cells than the native enzyme, especially when an inhibitor of heme oxygenase-1 (HO-1) is used, making it a promising candidate for a selective antitumor oxidative therapy controlled by the substrate addition, in the so called "activity on demand", thus sparing normal tissue from damage.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Agents , Cytotoxins , D-Amino-Acid Oxidase , Fibronectins , Neoplasm Proteins , Neoplasms/drug therapy , Recombinant Fusion Proteins , Single-Chain Antibodies , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetulus , Cytotoxins/chemistry , Cytotoxins/pharmacology , D-Amino-Acid Oxidase/chemistry , D-Amino-Acid Oxidase/genetics , D-Amino-Acid Oxidase/pharmacology , Fibronectins/antagonists & inhibitors , Fibronectins/genetics , Fibronectins/metabolism , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Single-Chain Antibodies/pharmacology
13.
Int J Mol Sci ; 21(13)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32605078

ABSTRACT

D-enantiomers of amino acids (D-AAs) are only present in low amounts in nature, frequently at trace levels, and for this reason, their biological function was undervalued for a long time. In the past 25 years, the improvements in analytical methods, such as gas chromatography, HPLC, and capillary electrophoresis, allowed to detect D-AAs in foodstuffs and biological samples and to attribute them specific biological functions in mammals. These methods are time-consuming, expensive, and not suitable for online application; however, life science investigations and industrial applications require rapid and selective determination of D-AAs, as only biosensors can offer. In the present review, we provide a status update concerning biosensors for detecting and quantifying D-AAs and their applications for safety and quality of foods, human health, and neurological research. The review reports the main challenges in the field, such as selectivity, in order to distinguish the different D-AAs present in a solution, the simultaneous assay of both L- and D-AAs, the production of implantable devices, and surface-scanning biosensors. These innovative tools will push future research aimed at investigating the neurological role of D-AAs, a vibrant field that is growing at an accelerating pace.


Subject(s)
Amino Acids/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Food Microbiology/instrumentation , Food Microbiology/methods , Animals , Humans
14.
Int J Mol Sci ; 21(9)2020 May 01.
Article in English | MEDLINE | ID: mdl-32369969

ABSTRACT

In nature, the D-enantiomers of amino acids (D-AAs) are not used for protein synthesis and during evolution acquired specific and relevant physiological functions in different organisms. This is the reason for the surge in interest and investigations on these "unnatural" molecules observed in recent years. D-AAs are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. In past years, a number of methods have been devised to produce D-AAs based on enantioselective enzymes. With the aim to increase the D-AA derivatives generated, to improve the intrinsic atomic economy and cost-effectiveness, and to generate processes at low environmental impact, recent studies focused on identification, engineering and application of enzymes in novel biocatalytic processes. The aim of this review is to report the advances in synthesis of D-AAs gathered in the past few years based on five main classes of enzymes. These enzymes have been combined and thus applied to multi-enzymatic processes representing in vitro pathways of alternative/exchangeable enzymes that allow the generation of an artificial metabolism for D-AAs synthetic purposes.


Subject(s)
Amino Acids/chemical synthesis , Chemistry Techniques, Synthetic , Enzymes/chemistry , Ammonia-Lyases , Biocatalysis , Chemistry Techniques, Synthetic/methods , Oxidoreductases , Protein Engineering , Transaminases
15.
Protein Expr Purif ; 174: 105675, 2020 10.
Article in English | MEDLINE | ID: mdl-32450138

ABSTRACT

Members of the T2 extracellular ribonucleases family have long been reported as stress response proteins, often involved in host defence, in many different taxonomic groups. In particular, the human RNASET2 protein (hRNASET2) has been reported as an extracellular tumor suppressor protein, endowed with the ability to act as an "alarmin" signalling molecule following its expression and secretion in the tumor microenvironment by cancer cells and the subsequent recruitment and activation of cells belonging to the host innate immune system. Many in vitro and in vivo assays have been recently reported in support of the oncosuppressive role of hRNASET2: most of them relied on genetically engineered cell lines and the use of recombinant proteins from non-mammalian sources. In order to ensure a human-like glycosylation pattern, here we report for the first time the expression of recombinant hRNASET2 in the CHO-S cell line. We established a simple one-step chromatographic purification procedure that resulted in the production of 5 mg of endotoxin-free hRNASET2 per liter of culture, with a >95% purity degree. hRNASET2 expressed in CHO-S cells displayed a high degree of glycosylation homogeneity and a secondary structure content in agreement with that determined from the crystal structure. Indeed, recombinant hRNASET2 was active at both enzymatic and functional level, as stated by a biological activity assay. The availability of a pure, homogeneous recombinant human RNASET2 would provide a key tool to better investigate its non cell-autonomous roles in the context of cancer development and growth.


Subject(s)
Gene Expression , Ribonucleases , Tumor Suppressor Proteins , Animals , CHO Cells , Cricetulus , Glycosylation , Humans , Recombinant Proteins , Ribonucleases/biosynthesis , Ribonucleases/genetics , Ribonucleases/isolation & purification , Tumor Suppressor Proteins/biosynthesis , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/isolation & purification
16.
Chemosphere ; 250: 126296, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32135437

ABSTRACT

In some environments, a number of crops, notably maize and nuts can be contaminated by aflatoxin B1 and related compounds resulting from the growth of aflatoxin-producing Aspergilli. Fungal peroxidases have been shown to degrade a number of mycotoxins, including aflatoxin B1 (AFB1). Therefore, the purpose of this study was to investigate the in vitro enzymatic degradation AFB1 by a recombinant type B dye decolorizing peroxidase (Rh_DypB). Analysis of the reaction products by HPLC-MS analysis showed that under optimized conditions AFB1 was efficiently transformed by Rh_DypB, reaching a maximum of 96% conversion after 4 days of reaction at 25 °C. Based on high resolution mass spectrometry analysis, AFB1 was demonstrated to be quantitatively converted to AFQ1, a compound with a significantly lower toxicity. A number of low molecular mass compounds were also present in the final reaction mixture in small quantities. The results presented in this study are promising for a possible application of the enzyme Rh_DypB for aflatoxin reduction in feed.


Subject(s)
Aflatoxin B1/metabolism , Peroxidase/metabolism , Aflatoxins , Coloring Agents , Models, Chemical , Mycotoxins , Peroxidases , Zea mays/chemistry
17.
Front Immunol ; 11: 370, 2020.
Article in English | MEDLINE | ID: mdl-32210967

ABSTRACT

The innate immune response represents a first-line defense against pathogen infection that has been widely conserved throughout evolution. Using the invertebrate Hirudo verbana (Annelida, Hirudinea) as an experimental model, we show here that the RNASET2 ribonuclease is directly involved in the immune response against Gram-positive bacteria. Injection of lipoteichoic acid (LTA), a key component of Gram-positive bacteria cell wall, into the leech body wall induced a massive migration of granulocytes and macrophages expressing TLR2 (the key receptor involved in the response to Gram-positive bacteria) toward the challenged/inoculated area. We hypothesized that the endogenous leech RNASET2 protein (HvRNASET2) might be involved in the antimicrobial response, as already described for other vertebrate ribonucleases, such as RNase3 and RNase7. In support of our hypothesis, HvRNASET2 was mainly localized in the granules of granulocytes, and its release in the extracellular matrix triggered the recruitment of macrophages toward the area stimulated with LTA. The activity of HvRNASET2 was also evaluated on Staphylococcus aureus living cells by means of light, transmission, and scanning electron microscopy analysis. HvRNASET2 injection triggered the formation of S. aureus clumps following a direct interaction with the bacterial cell wall, as demonstrated by immunogold assay. Taken together, our data support the notion that, during the early phase of leech immune response, granulocyte-released HvRNASET2 triggers bacterial clumps formation and, at the same time, actively recruits phagocytic macrophages in order to elicit a rapid and effective eradication of the infecting microorganisms from inoculated area.


Subject(s)
Hirudo medicinalis/immunology , Immunity, Innate , Ribonucleases/physiology , Animals , CD11b Antigen/physiology , Lipopolysaccharides/pharmacology , Macrophages/immunology , Phagocytosis , Teichoic Acids/pharmacology , Toll-Like Receptor 2/physiology
18.
Appl Microbiol Biotechnol ; 104(2): 555-574, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31832715

ABSTRACT

With the only exception of glycine, all amino acids exist in two specular structures which are mirror images of each other, called D-(dextro) and L-(levo) enantiomers. During evolution, L-amino acids were preferred for protein synthesis and main metabolism; however, the D-amino acids (D-AAs) acquired different and specific functions in different organisms (from playing a structural role in the peptidoglycan of the bacterial cell wall to modulating neurotransmission in mammalian brain). With the advent of sophisticated and sensitive analytical techniques, it was established during the past few decades that many foods contain considerable amounts of D-AAs: we consume more than 100 mg of D-AAs every day. D-AAs are present in a variety of foodstuffs, where they fulfill a relevant role in producing differences in taste and flavor and in their antimicrobial and antiaging properties from the corresponding L-enantiomers. In this review, we report on the derivation of D-AAs in foods, mainly originating from the starting materials, fermentation processes, racemization during food processing, or contamination. We then focus on leading-edge methods to identify and quantify D-AAs in foods. Finally, current knowledge concerning the effect of D-AAs on the nutritional state and human health is summarized, highlighting some positive and negative effects. Notwithstanding recent progress in D-AA research, the relationships between presence and nutritional value of D-AAs in foods represent a main scientific issue with interesting economic impact in the near future.


Subject(s)
Amino Acids/analysis , Food Analysis , Nutrients/analysis , Stereoisomerism , Food Contamination , Food Handling
19.
Nanomedicine ; 24: 102122, 2020 02.
Article in English | MEDLINE | ID: mdl-31706037

ABSTRACT

The flavoenzyme D-amino acid oxidase (DAAO) represents a potentially good option for cancer enzyme prodrug therapy as it produces H2O2 using D-amino acids as substrates, compounds present at low concentration in vivo and that can be safely administered to regulate H2O2 production. We optimized the cytotoxicity of the treatment by: i) using an efficient enzyme variant active at low O2 and D-alanine concentrations (mDAAO); ii) improving the stability and half-life of mDAAO and the enhanced permeability and retention effect by PEGylation; and iii) inhibiting the antioxidant cellular system by a heme oxygenase-1 inhibitor (ZnPP). A very low amount of PEG-mDAAO (10 mU, 50 ng of enzyme) induces cytotoxicity on various tumor cell lines. Notably, PEG-mDAAO seems well suited for in vivo evaluation as it shows the same cytotoxicity at air saturation (21%) and 2.5% O2, a condition resembling the microenvironment found in the central part of tumors.


Subject(s)
Basidiomycota/enzymology , D-Amino-Acid Oxidase , Fungal Proteins , Polyethylene Glycols , Protein Engineering , Animals , Basidiomycota/genetics , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , D-Amino-Acid Oxidase/chemistry , D-Amino-Acid Oxidase/genetics , D-Amino-Acid Oxidase/pharmacology , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/pharmacology , Neoplasms/metabolism , Neoplasms/pathology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...