Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 628(8006): 162-170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538791

ABSTRACT

Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.


Subject(s)
Adaptive Immunity , Aging , Cell Lineage , Hematopoietic Stem Cells , Lymphocytes , Myeloid Cells , Rejuvenation , Animals , Female , Male , Mice , Adaptive Immunity/immunology , Aging/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Inflammation/immunology , Inflammation/pathology , Lymphocytes/cytology , Lymphocytes/immunology , Lymphopoiesis , Myeloid Cells/cytology , Myeloid Cells/immunology , Myelopoiesis , Phenotype , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Viruses/immunology
2.
Nat Cancer ; 3(11): 1351-1366, 2022 11.
Article in English | MEDLINE | ID: mdl-36411318

ABSTRACT

Radiation therapy is a mainstay of cancer treatment but does not always lead to complete tumor regression. Here we combine radiotherapy with blockade of the 'don't-eat-me' cell-surface molecule CD47 in small cell lung cancer (SCLC), a highly metastatic form of lung cancer. CD47 blockade potently enhances the local antitumor effects of radiotherapy in preclinical models of SCLC. Notably, CD47 blockade also stimulates off-target 'abscopal' effects inhibiting non-irradiated SCLC tumors in mice receiving radiation. These abscopal effects are independent of T cells but require macrophages that migrate into non-irradiated tumor sites in response to inflammatory signals produced by radiation and are locally activated by CD47 blockade to phagocytose cancer cells. Similar abscopal antitumor effects were observed in other cancer models treated with radiation and CD47 blockade. The systemic activation of antitumor macrophages following radiotherapy and CD47 blockade may be particularly important in patients with cancer who suffer from metastatic disease.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Mice , Animals , CD47 Antigen , Macrophages , Phagocytosis , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/drug therapy
3.
EMBO J ; 35(1): 62-76, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26620550

ABSTRACT

Altered abundance of phosphatidyl inositides (PIs) is a feature of cancer. Various PIs mark the identity of diverse membranes in normal and malignant cells. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) resides predominantly in the plasma membrane, where it regulates cellular processes by recruiting, activating, or inhibiting proteins at the plasma membrane. We find that PTPRN2 and PLCß1 enzymatically reduce plasma membrane PI(4,5)P2 levels in metastatic breast cancer cells through two independent mechanisms. These genes are upregulated in highly metastatic breast cancer cells, and their increased expression associates with human metastatic relapse. Reduction in plasma membrane PI(4,5)P2 abundance by these enzymes releases the PI(4,5)P2-binding protein cofilin from its inactive membrane-associated state into the cytoplasm where it mediates actin turnover dynamics, thereby enhancing cellular migration and metastatic capacity. Our findings reveal an enzymatic network that regulates metastatic cell migration through lipid-dependent sequestration of an actin-remodeling factor.


Subject(s)
Actins/metabolism , Cell Movement , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phospholipase C beta/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism , Actin Depolymerizing Factors/metabolism , Animals , Breast Neoplasms , Cell Line, Tumor , Humans , Mice, SCID
4.
Nat Cell Biol ; 17(5): 651-64, 2015 May.
Article in English | MEDLINE | ID: mdl-25866923

ABSTRACT

Through in vivo selection of multiple ER-negative human breast cancer populations for enhanced tumour-forming capacity, we have derived subpopulations that generate tumours more efficiently than their parental populations at low cell numbers. Tumorigenic-enriched subpopulations exhibited increased expression of LAMA4, FOXQ1 and NAP1L3­genes that are also expressed at greater levels by independently derived metastatic subpopulations. These genes promote metastatic efficiency. FOXQ1 promotes LAMA4 expression, and LAMA4 enhances clonal expansion following substratum detachment in vitro, tumour re-initiation in multiple organs, and disseminated metastatic cell proliferation and colonization. The promotion of cancer cell proliferation and tumour re-initiation by LAMA4 requires ß1-integrin. Increased LAMA4 expression marks the transition of human pre-malignant breast lesions to malignant carcinomas, and tumoral LAMA4 overexpression predicts reduced relapse-free survival in ER-negative patients. Our findings reveal common features that govern primary and metastatic tumour re-initiation and identify a key molecular determinant of these processes.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Cell Proliferation , Laminin/metabolism , Liver Neoplasms/metabolism , Lung Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Animals , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Databases, Genetic , Disease Progression , Disease-Free Survival , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Integrin beta1/metabolism , Laminin/genetics , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Mice, Inbred NOD , Mice, SCID , Neoplasm Micrometastasis , Neoplastic Stem Cells/pathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phenotype , RNA Interference , Signal Transduction , Time Factors , Transfection , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL