Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem J ; 473(6): 703-15, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26699902

ABSTRACT

Tumours display different cell populations with distinct metabolic phenotypes. Thus, subpopulations can adjust to different environments, particularly with regard to oxygen and nutrient availability. Our results indicate that progression to metastasis requires mitochondrial function. Our research, centered on cell lines that display increasing degrees of malignancy, focused on metabolic events, especially those involving mitochondria, which could reveal which stages are mechanistically associated with metastasis. Melanocytes were subjected to several cycles of adhesion impairment, producing stable cell lines exhibiting phenotypes representing a progression from non-tumorigenic to metastatic cells. Metastatic cells (4C11+) released the highest amounts of lactate, part of which was derived from glutamine catabolism. The 4C11+ cells also displayed an increased oxidative metabolism, accompanied by enhanced rates of oxygen consumption coupled to ATP synthesis. Enhanced mitochondrial function could not be explained by an increase in mitochondrial content or mitochondrial biogenesis. Furthermore, 4C11+ cells had a higher ATP content, and increased succinate oxidation (complex II activity) and fatty acid oxidation. In addition, 4C11+ cells exhibited a 2-fold increase in mitochondrial membrane potential (ΔΨmit). Consistently, functional assays showed that the migration of cells depended on glutaminase activity. Metabolomic analysis revealed that 4C11+ cells could be grouped as a subpopulation with a profile that was quite distinct from the other cells investigated in the present study. The results presented here have centred on how the multiple metabolic inputs of tumour cells may converge to compose the so-called metastatic phenotype.


Subject(s)
Glutamine/metabolism , Melanocytes/physiology , Melanoma/metabolism , Oxidative Phosphorylation , Oxygen Consumption/physiology , Animals , Cell Line, Tumor , Cell Movement , Glucose/metabolism , Glutaminase/metabolism , Glutamine/genetics , Lactates/metabolism , Melanocytes/pathology , Melanoma/pathology , Membrane Potentials/physiology , Metabolism , Mice , Oxidation-Reduction , Phenotype
2.
Environ Health ; 7: 53, 2008 Oct 29.
Article in English | MEDLINE | ID: mdl-18959803

ABSTRACT

BACKGROUND: In 2005, 84% of Wayana Amerindians living in the upper marshes of the Maroni River in French Guiana presented a hair mercury concentration exceeding the limit set up by the World Health Organization (10 microg/g). To determine whether this mercurial contamination was harmful, mice have been fed diets prepared by incorporation of mercury-polluted fish from French Guiana. METHODS: Four diets containing 0, 0.1, 1, and 7.5% fish flesh, representing 0, 5, 62, and 520 ng methylmercury per g, respectively, were given to four groups of mice for a month. The lowest fish regimen led to a mercurial contamination pressure of 1 ng mercury per day per g of body weight, which is precisely that affecting the Wayana Amerindians. RESULTS: The expression of several genes was modified with mercury intoxication in liver, kidneys, and hippocampus, even at the lowest tested fish regimen. A net genetic response could be observed for mercury concentrations accumulated within tissues as weak as 0.15 ppm in the liver, 1.4 ppm in the kidneys, and 0.4 ppm in the hippocampus. This last value is in the range of the mercury concentrations found in the brains of chronically exposed patients in the Minamata region or in brains from heavy fish consumers. Mitochondrial respiratory rates showed a 35-40% decrease in respiration for the three contaminated mice groups. In the muscles of mice fed the lightest fish-containing diet, cytochrome c oxidase activity was decreased to 45% of that of the control muscles. When mice behavior was assessed in a cross maze, those fed the lowest and mid-level fish-containing diets developed higher anxiety state behaviors compared to mice fed with control diet. CONCLUSION: We conclude that a vegetarian diet containing as little as 0.1% of mercury-contaminated fish is able to trigger in mice, after only one month of exposure, disorders presenting all the hallmarks of mercurial contamination.


Subject(s)
Disease Models, Animal , Fishes , Food Contamination , Mercury Poisoning/etiology , Methylmercury Compounds/poisoning , Methylmercury Compounds/toxicity , Adult , Animals , Anxiety/chemically induced , Female , French Guiana , Gene Expression , Humans , Indians, South American , Male , Mercury Poisoning/genetics , Mercury Poisoning/metabolism , Methylmercury Compounds/administration & dosage , Methylmercury Compounds/pharmacokinetics , Mice , Mice, Inbred C57BL , Middle Aged , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Mutation , Oxygen Consumption/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL