Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1297314, 2023.
Article in English | MEDLINE | ID: mdl-38186604

ABSTRACT

Drought frequency and intensity are projected to increase with climate change, thus amplifying stress on forest trees. Resilience to drought implicates physiological traits such as xylem conductivity and wood anatomical traits, which are related to growth and wood density. Integrating drought-stress response traits at the juvenile stage into breeding criteria could help promote the survival of planted seedlings under current and future climate and thus, improve plantation success. We assessed in greenhouse the influence of drought-induced stress on 600 two-year-old white spruce (Picea glauca) seedlings from 25 clonal lines after two consecutive growing seasons. Three levels of drought-induced stress were applied: control, moderate and severe. Seedlings were also planted at a 45° angle to clearly separate compression from normal wood. We looked at the phenotypic and genetic effects of drought stress on xylem specific hydraulic conductivity, lumen diameter, tracheid diameter and length, and the number of pits per tracheid in the normal wood. We detected no significant effects of drought stress except for tracheid length, which decreased with increasing drought stress. We found low to high estimates of trait heritability, which generally decreased with increasing drought stress. Genetic correlations were higher than phenotypic correlations for all treatments. Specific conductivity was genetically highly correlated positively with lumen diameter and tracheid length under all treatments. Tracheid length and diameter were always negatively correlated genetically, indicating a trade-off in resource allocation. Moderate to high genetic correlations sometimes in opposite direction were observed between physico-anatomical and productivity traits, also indicating trade-offs. A large variation was observed among clones for all physico-anatomical traits, but clonal ranks were generally stable between control and drought-induced treatments. Our results indicate the possibility of early screening of genetic material for desirable wood anatomical attributes under normal growing conditions, thus allowing to improve the drought resilience of young trees.

2.
PeerJ Comput Sci ; 7: e672, 2021.
Article in English | MEDLINE | ID: mdl-34604516

ABSTRACT

Airborne laser scanning (ALS) has gained importance over recent decades for multiple uses related to the cartography of landscapes. Processing ALS data over large areas for forest resource estimation and ecological assessments requires efficient algorithms to filter out some points from the raw data and remove human-made structures that would otherwise be mistaken for natural objects. In this paper, we describe an algorithm developed for the segmentation and cleaning of electrical network facilities in low density (2.5 to 13 points/m2) ALS point clouds. The algorithm was designed to identify transmission towers, conductor wires and earth wires from high-voltage power lines in natural landscapes. The method is based on two priors i.e. (1) the availability of a map of the high-voltage power lines across the area of interest and (2) knowledge of the type of transmission towers that hold the conductors along a given power line. It was tested on a network totalling 200 km of wires supported by 415 transmission towers with diverse topographies and topologies with an accuracy of 98.6%. This work will help further the automated detection capacity of power line structures, which had previously been limited to high density point clouds in small, urbanised areas. The method is open-source and available online.

3.
Tree Physiol ; 35(12): 1366-77, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26427915

ABSTRACT

To recover verticality after disturbance, angiosperm trees produce 'tension wood' allowing them to bend actively. The driving force of the tension has been shown to take place in the G-layer, a specific unlignified layer of the cell wall observed in most temperate species. However, in tropical rain forests, the G-layer is often absent and the mechanism generating the forces to reorient trees remains unclear. A study was carried out on tilted seedlings, saplings and adult Simarouba amara Aubl. trees-a species known to not produce a G-layer. Microscopic observations were done on sections of normal and tension wood after staining or observed under UV light to assess the presence/absence of lignin. We showed that S. amara produces a cell-wall layer with all of the characteristics typical of G-layers, but that this G-layer can be observed only as a temporary stage of the cell-wall development because it is masked by a late lignification. Being thin and lignified, tension wood fibres cannot be distinguished from normal wood fibres in the mature wood of adult trees. These observations indicate that the mechanism generating the high tensile stress in tension wood is likely to be the same as that in species with a typical G-layer and also in species where the G-layer cannot be observed in mature cells.


Subject(s)
Lignin/physiology , Simarouba/physiology , Stress, Mechanical , Wood/physiology , Cell Wall/physiology , Microscopy, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL