Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Parasitol ; 69(2): 1107-1114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38536611

ABSTRACT

BACKGROUND: Leishmania is an intracellular flagellate protozoan parasite that causes a wide range of clinical diseases in humans. The basis of immunological resistance against leishmaniasis depends on Thl reactions and is within the time period of cytokine function. METHODS: In this study, human anti-IL17 antibody and IFNγ-producing promastigote were produced to be used in leishmanization. A sequence of light and heavy chains' gene of anti-IL17 antibody and human IFNγ (hIFNγ) was obtained from the NCBI database and synthesized in the ECORV reaction site in the plasmid pGH, which it's called pGH-hIFNγ-antiIL17. The synthesized part using the restriction enzyme ECORV was extracted from the plasmid and after purification by electroporation was transferred to Iranian lizard Leishmania (I.L.L). Evaluation of structural presence in the I.L.L genome at the level of DNA and mRNA was assessed. The expressions of hIFNγ and anti-IL17 were evaluated and confirmed using ELISA and western blot analysis. The hIFNγ secreted from the culture medium was collected at high concentrations of 124.36 ± 6.47 pg/mL. RESULTS: Targeted gene replacement into the I.L.L genome was successfully performed for the first time using the pGH-hIFNγ-antiIL17 plasmid in an identical replacement process. Stabilized recombinant DNA contains a target gene that has no toxicity to the parasite. CONCLUSIONS: The effective achievement of producing a recombinant gene was done for the first time by replacing the I.L.L-CPC gene with plasmid pGH-hIFNγ-antiIL17 by targeted gene replacement. This cab can regulate the production of hIFNγ and anti-IL17. This makes it a viable choice for eliminating leishmania.


Subject(s)
Interferon-gamma , Interleukin-17 , Leishmania , Leishmania/immunology , Leishmania/genetics , Interferon-gamma/immunology , Interferon-gamma/genetics , Humans , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-17/metabolism , Animals , Plasmids/genetics , Antibodies, Protozoan/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Lizards/parasitology , Lizards/immunology
2.
Acta Parasitol ; 69(1): 526-532, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38227108

ABSTRACT

BACKGROUND: Cutaneous leishmaniasis is among the neglected diseases in the world. Pentavalent antimonial compounds are considered the first-line treatment for this disease. However, using alternative natural products has received great attention due to the side effects of chemical drugs and drug resistance of the Leishmania parasite. The present study aims to investigate the effect of Satureja khuzestanica essential oil (SKEO) on MDR1 gene expression. METHODS: In this study, standard strains of Leishmania major promastigotes were exposed to 5, 10, 15, and 20 µg/ml of SKEO. MDR1 gene expression of parasites exposed to essential oil was evaluated using real-time PCR. GAPDH was employed as the housekeeping gene for internal control. RESULTS: Despite the increase, no statistically significant difference was observed in the relative expression of the MDR1 gene between the control group and the groups containing 5, 10, and 20 µg/ml of SKEO (P > 0.05). The relative expression of the MDR1 gene significantly increased in the group containing 15 µg/ml of essential oil compared to the control one (P < 0.05). CONCLUSION: This study showed that the use of essential oil of Satureja khuzestanica plant can have an increasing effect on the expression of MDR1 gene of Leishmania promastigotes, which is the best case if Satureja khuzestanica essential oil reduces the expression of MDR1 gene. So it seems that the use of essential oil of Satoria plant is effective in controlling Leishmania parasite, but its concentrations induce drug resistance. As a result, concentrations of essential oil should be used that have a controlling effect on the growth and proliferation of Leishmania parasite and also have the least effect on the induction of MDR1 gene expression.


Subject(s)
Leishmania major , Oils, Volatile , Satureja , Leishmania major/drug effects , Leishmania major/genetics , Oils, Volatile/pharmacology , Satureja/chemistry , Gene Expression/drug effects , Plant Oils/pharmacology , Antiprotozoal Agents/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL