Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Int J Biol Macromol ; 279(Pt 4): 135527, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39265907

ABSTRACT

The high mortality and enormous economic burden of bacterially infected wounds remains a huge challenge for human health. The development of ideal wound dressings with desirable antibacterial and good wound healing properties still remains a major problem affecting the regeneration of bacterially infected wound tissue. Herein, we present novel alginate-based hydrogel microspheres containing lysozyme and MXene (i-Lyso@Alg), in which the positively charged lysozyme is immobilized on the negatively charged MXene by electrostatic interaction. Due to the presence of MXene, i-Lyso@Alg exhibits good thermal effect, drug release behavior and strong antibacterial activity under near-infrared (NIR) irradiation. The synthesized i-Lyso@Alg can realize not only improvement of lysozyme stability but also photothermal responsive up-regulation for biocatalysis of lysozyme. The excellent antibacterial activities of i-Lyso@Alg were attributed to the photothermally enhanced lysozyme activity, assisted by bacterial death caused by local thermal effect of photothermally activated MXene and the physical damage due to the MXene. In addition, in the infected skin wounds of rats, i-Lyso@Alg + NIR significantly accelerates the wound healing process by inhibiting the expression of inflammatory factors and bacterial (Staphylococcus aureus) infection, and inducing the expression of pro-angiogenic factors and tissue remodeling. Overall, the results of this study introduce a pioneering approach by integrating the unique photothermal properties of MXene with the enzymatic action of lysozyme within an alginate-based hydrogel microsphere. This synergistic system not only advances the frontier of antibacterial wound dressings but also represents a significant step towards effective management of infected wounds, which possesses great potential in clinical treatment of infected wounds.

2.
Int J Biol Macromol ; 278(Pt 4): 135404, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39256124

ABSTRACT

Numerous studies have established a strong association between Malassezia and various skin disorders, including atopic dermatitis. Finding appropriate methods or medications to alleviate Malassezia-induced skin damage is of notable public interest. This study aimed to evaluate the therapeutic effect of the exopolysaccharide EPS1, produced by Paenibacillus polymyxa, on Malassezia restricta-induced skin damage. In vitro assays indicated that EPS1 reduced the expression of pro-inflammatory cytokine genes in TNF-α-induced HaCaT cells. In a murine model, EPS1 was found to mitigate clinical symptoms, reduce epidermal thickness and mast cell infiltration, improve skin barrier function, decrease pro-inflammatory cytokine levels associated with type 17 inflammation, enhance Tregs in the spleen, upregulate the transcription of Treg-related genes in skin lesions, and modulate the skin microbiota. This study is the first to report the alleviating effect of Paenibacillus exopolysaccharide on Malassezia-induced skin inflammation and its impact on the skin microbiota. These findings support the potential of Paenibacillus exopolysaccharides as consumer products and therapeutic agents for managing Malassezia-induced skin damage by improving skin barrier function, modulating immune responses, and influencing skin microbiota.


Subject(s)
Malassezia , Microbiota , Polysaccharides, Bacterial , Skin , Malassezia/drug effects , Animals , Mice , Skin/microbiology , Skin/drug effects , Skin/immunology , Humans , Polysaccharides, Bacterial/pharmacology , Microbiota/drug effects , Cytokines/metabolism , Paenibacillus , Disease Models, Animal , HaCaT Cells
3.
Chem Commun (Camb) ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39318167

ABSTRACT

Exploring the different spin states of central metals in the complex to regulate the anti-tumor activity of cancer cells is of great significance in drug design and clinical use. However, it is a challenge to build a strong coupling between spin states and anti-tumor activities in one system. Herein, we present two complexes {FeII2L2[PdII(CN)4]2}·2H2O (L = Bztpen (1), Bztppn (2); Bztpen = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethylenediamine, Bztppn = N-benzyl-N,N',N'-tris(2-pyridylmethyl)propylenediamine) showing different cytotoxic activities actuated by fine-tuning the structure with different spin states of Fe(II). Magnetic susceptibility measurements and X-ray diffraction revealed that the Fe(II) ion in complexes 1 and 2 remains in the LS and HS state, respectively, at room temperature. Cytotoxicity tests indicate that complex 1 is more biologically effective than complex 2. In complex 2, however, the high-spin Fe(II) played a key role in regulating its in vitro antitumor effects and seems to be associated with ROS-mediated apoptosis. These findings offer a new avenue for developing anti-cancer drugs by designing complexes with different spin states.

4.
Immunol Lett ; 269: 106907, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39122094

ABSTRACT

The present study focused on the efficacy and role of triptolide (TPL) in relieving symptoms of acute gouty arthritis (AGA) in vivo and in vitro. The effects of TPL in AGA were investigated in monosodium urate (MSU)-treated rat ankles, RAW264.7 macrophages, and neutrophils isolated from mouse peritoneal cavity. Observation of pathological changes in the ankle joint of rats. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (RT-qPCR) were performed to detect the expression levels of inflammatory factors and chemokines. The levels of the indicators of macrophage M1/M2 polarization, and the mechanistic targets of Akt and rapamycin complex 2, were determined via western blotting and RT-qPCR. The expression levels of CD86 and CD206 were detected using immunohistochemistry. Neutrophil migration was observed via air pouch experiments in vivo and Transwell cell migration assay in vitro. Myeloperoxidase (MPO) and Neutrophil elastase (NE) release was analyzed by via immunohistochemistry and immunofluorescence. The expression levels of beclin-1, LC3B, Bax, Bcl-2, and cleaved caspase-3 in neutrophils were determined via western blotting and immunofluorescence. Neutrophil apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Our results suggest that TPL inhibited inflammatory cell infiltration in rat ankle joints and inflammatory factor and chemokine secretion in rat serum, regulated macrophage polarization through the PI3K/AKT signaling pathway, suppressed inflammatory factor and chemokine expression in neutrophils, and inhibited neutrophil migration, neutrophil extracellular trap formation, transitional autophagy, and apoptosis. This suggests that TPL can prevent and treat MSU-induced AGA by regulating macrophage polarization through the PI3K/Akt pathway and modulating neutrophil activity.


Subject(s)
Arthritis, Gouty , Diterpenes , Epoxy Compounds , Macrophages , Neutrophils , Phenanthrenes , Uric Acid , Animals , Diterpenes/pharmacology , Diterpenes/therapeutic use , Neutrophils/immunology , Neutrophils/drug effects , Neutrophils/metabolism , Rats , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Arthritis, Gouty/drug therapy , Arthritis, Gouty/chemically induced , Arthritis, Gouty/metabolism , Arthritis, Gouty/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Mice , Epoxy Compounds/pharmacology , Male , Disease Models, Animal , RAW 264.7 Cells , Signal Transduction/drug effects , Macrophage Activation/drug effects , Apoptosis/drug effects , Neutrophil Activation/drug effects , Humans , Rats, Sprague-Dawley , Cell Movement/drug effects
5.
Molecules ; 29(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38930821

ABSTRACT

2,6-pyridine dicarboxylic acid (DPA) is an exceptional biomarker of notorious anthrax spores. Therefore, the rapid, sensitive, and selective quantitative detection of DPA is extremely significant and urgent. This paper reports a Zn(II) metal-organic framework with the formula of {[Zn6(NDA)6(DPBT)3] 2H2O·3DMF}n (MOF-1), which consists of 2,6-naphthalenedicarboxylic acid (2,6-NDA), 4,7-di(4-pyridyl)-2,1,3-benzothiadiazole (DPBT), and Zn(II) ions. Structural analysis indicated that MOF-1 is a three-dimensional (3D) network which crystallized in the monoclinic system with the C2/c space group, revealing high pH, solvent, and thermal stability. Luminescence sensing studies demonstrated that MOF-1 had the potential to be a highly selective, sensitive, and recyclable fluorescence sensor for the identification of DPA. Furthermore, fluorescent test paper was made to detect DPA promptly with color changes. The enhancement mechanism was established by the hydrogen-bonding interaction and photoinduced electron transfer transition between MOF-1 and DPA molecules.


Subject(s)
Biomarkers , Metal-Organic Frameworks , Thiadiazoles , Zinc , Metal-Organic Frameworks/chemistry , Zinc/chemistry , Zinc/analysis , Thiadiazoles/chemistry , Anthrax/diagnosis , Picolinic Acids/chemistry , Picolinic Acids/analysis , Bacillus anthracis , Models, Molecular
6.
J Physiol Biochem ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878215

ABSTRACT

Macrophage lipid accumulation is a critical contributor to foam cell formation and atherosclerosis. Tumor necrosis factor-α-induced protein 1 (TNFAIP1) is closely associated with cardiovascular disease. However, its role and molecular mechanisms in atherogenesis remain unclear. TNFAIP1 was knocked down in THP-1 macrophage-derived foam cells and apolipoprotein-deficient (apoE-/-) mice using lentiviral vector. The expression of lncRNA enhancing endothelial nitric oxide synthase expression (LEENE), Forkhead box O1 (FoxO1) and ATP binding cassette transporter A1 (ABCA1) was evaluated by qRT-PCR and/or western blot. Lipid accumulation in macrophage was assessed by high-performance liquid chromatography and Oil red O staining. RNA immunoprecipitation and RNA pull-down assay were performed to verify the interaction between LEENE and FoxO1 protein. Atherosclerotic lesions were analyzed using HE, Oil red O and Masson staining. Our results showed that TNFAIP1 was significantly increased in THP-1 macrophages loaded with oxidized low-density lipoprotein. Knockdown of TNFAIP1 enhanced LEENE expression, promoted the direct interaction of LEENE with FoxO1 protein, stimulated FoxO1 protein degradation through the proteasome pathway, induced ABCA1 transcription, and finally suppressed lipid accumulation in THP-1 macrophage-derived foam cells. TNFAIP1 knockdown also up-regulated ABCA1 expression, improved plasma lipid profiles, enhanced the efficiency of reverse cholesterol transport and attenuated lesion area in apoE-/- mice. Taken together, these results provide the first direct evidence that TNFAIP1 aggravates atherosclerosis by promoting macrophage lipid accumulation via the LEENE/FoxO1/ABCA1 signaling pathway. TNFAIP1 may represent a promising therapeutic target for atherosclerotic cardiovascular disease.

7.
Water Sci Technol ; 89(11): 3007-3020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877627

ABSTRACT

To assess the possibility of using aerobic denitrification (AD) bacteria with high NO2--N accumulation for nitrogen removal in wastewater treatment, conditional optimization, as well as sole and mixed nitrogen source tests involving AD bacterium, Comamonas sp. pw-6 was performed. The results showed that the optimal carbon source, pH, C/N ratio, rotational speed, and salinity for this strain were determined to be succinate, 7, 20, 160 rpm, and 0%, respectively. Further, this strain preferentially utilized NH4+-N, NO3--N, and NO2--N, and when NO3--N was its sole nitrogen source, 92.28% of the NO3--N (150 mg·L-1) was converted to NO2--N. However, when NH4+-N and NO3--N constituted the mixed nitrogen source, NO3--N utilization by this strain was significantly lower (p < 0.05). Therefore, a strategy was proposed to combine pw-6 bacteria with traditional autotrophic nitrification to achieve the application of pw-6 bacteria in NH4+-N-containing wastewater treatment. Bioaugmented application experiments showed significantly higher NH4+-N removal (5.96 ± 0.94 mg·L-1·h-1) and lower NO3--N accumulation (2.52 ± 0.18 mg·L-1·h-1) rates (p < 0.05) than those observed for the control test. Thus, AD bacteria with high NO2--N accumulation can also be used for practical applications, providing a basis for expanding the selection range of AD strains for wastewater treatment.


Subject(s)
Comamonas , Denitrification , Nitrogen , Waste Disposal, Fluid , Wastewater , Nitrogen/metabolism , Comamonas/metabolism , Waste Disposal, Fluid/methods , Wastewater/chemistry , Aerobiosis , Water Purification/methods , Water Pollutants, Chemical/metabolism
8.
ACS Omega ; 9(15): 17334-17343, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645335

ABSTRACT

The constituent ions of calcium phosphate in body fluids are in the supersaturated state and tend to form minerals physiologically or pathologically. Inorganic pyrophosphate (PPi) has been considered as one of the most important inhibitors against the formation of calcium phosphate minerals. However, serum PPi concentrations in humans are maintained at a level of several µmol/L, and its effectiveness and mechanism for mineralization inhibition remain ambiguous. Therefore, this work studied the mineralization process in an aqueous solution, explored the effective inhibitory concentration of PPi by titration, and characterized the species during the reactions. We find that PPi at a normal serum concentration does not inhibit mineralization significantly. Such a conclusion was further confirmed in the PPi-added serum. This work indicates that PPi may not be a major direct inhibitor of mineralization in serum and possibly functions via alternative mechanisms.

9.
Mikrochim Acta ; 191(5): 274, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635036

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) have a significant impact on the environment and human health, due to their sometimes toxic and carcinogenic characteristics. Therefore, an innovative chemosensor was constructed for ultrasensitive determination of two typical PCCPs (hydroquinone (HQ) and catechol (CC)) in several minutes. The homemade chemosensor (UiO-67@GO/MWCNTs) consisted of MOF(UiO-67), graphene oxide (GO), and multi-walled carbon nanotubes (MWCNTs) composites; it was a networked, structurally sparse, porosity-rich, homogeneous octahedral composite, and had ultra-high electrical conductivity, which provided lots of active adsorption sites, promote charge transfer, and enrich lots of molecules to be measured in a few minutes. The prepared electrochemical sensor showed good long-term stability, applicability, reproducibility, and immunity to interference for the determination of HQ and CC, with a wide linear range of response of 5.0 ~ 940 µM for both HQ and CC, and a low limit of detection with satisfactory recoveries. In addition, a new strategy of using MOF composites as the basis for electrochemical determination of organic small molecules was established, and a new platform was constructed for the quantitative determination of organic small molecules in various environmental samples.

10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1020092

ABSTRACT

Objective:To develop and verify a nomogram to predict disease-free survival(DFS)and overall survival(OS)for patients undergoing cervical cancer surgery,which may provide reference for evaluating the prognosis of cervical cancer patients undergoing surgery.Methods:The clinical,pathological and follow-up data of patients who underwent radical operation for cervical cancer in Xijing Hospital,Air Force Medical University from March 2013 to October 2018 were analyzed retrospectively.Based on Cox regression analysis,Bayesian Informa-tion Criterion(BIC)backward stepwise selection method and R square screening variables,Net Reclassification Index(NRI)and Integrated Discrimination Improvement(IDI)were used to compare the predictive efficiency of the model,and a nomogram with better predictive efficiency was selected.The consistency index(C-index)and the receiver operating characteristic curve(ROC)were used to test the efficiency of the nomogram.Results:A total of 950 patients with cervical cancer were enrolled in this study.The risk factors for constructing the DFS nomogram were FIGO stage(2018),parametrium invasion,invasion depth,and maximum tumor diameter.The C-index for DFS in the training cohort and the verification cohort were 0.754 and 0.720,respectively.The area under ROC of the training cohort for 1-,3-and 5-years was 0.74(95%CI 0.65-0.82),0.77(95%CI 0.71-0.83)and 0.79(95%CI0.74-0.85),and the areas under ROC of verification cohort 1-,3-and 5-years were 0.72(95%CI 0.58-0.87),0.75(95%CI 0.64-0.86)and 0.72(95%CI 0.61-0.84),respectively.The risk factors for con-structing the OS nomogram were FIGO stage(2018),histological type,LVSI,parametrium invasion,surgical mar-gin,and invasion depth.The C-index for OS in the training cohort and the verification cohort were 0.737 and 0.759,respectively.The area under ROC of the 3-and 5-year training cohort were 0.76(95%CI 0.69-0.83)and 0.78(95%CI 0.72-0.84),and the areas under ROC of verification cohort 3-and 5-years were 0.76(95%CI 0.65-0.87)and 0.79(95%CI 0.69-0.88),respectively.Conclusions:This study is based on real-world big data to construct nomogram of DFS for 1,3,and 5 years and OS for 3,and 5 years for cervical cancer,which have ideal predictive effects and help clinical physicians correctly evaluate the prognosis of cervical cancer surgery patients.It provides strong reference basis for diagnosis,treatment,and prognosis evaluation.

11.
BMC Cancer ; 23(1): 1122, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978366

ABSTRACT

BACKGROUND: Accumulating evidence indicates that type II cystatin (CST) genes play a pivotal role in several tumor pathological processes, thereby affecting all stages of tumorigenesis and tumor development. However, the prognostic and predictive value of type II CST genes in GC has not yet been investigated. METHODS: The present study evaluated the expression and prognostic value of type II CST genes in GC by using The Cancer Genome Atlas (TCGA) database and the Kaplan-Meier plotter (KM plotter) online database. The type II CST genes related to the prognosis of GC were then screened out. We then validated the expression and prognostic value of these genes by immunohistochemistry. We also used Database for Annotation, Visualization, and Integrated Discovery (DAVID), Gene Multiple Association Network Integration Algorithm (GeneMANIA), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), nomogram, genome-wide co-expression analysis, and other bioinformatics tools to analyze the value of type II CST genes in GC and the underlying mechanism. RESULTS: The data from the TCGA database and the KM plotter online database showed that high expression of CST2 and CST4 was associated with the overall survival (OS) of patients with GC. The immunohistochemical expression analysis showed that patients with high expression of CST4 in GC tissues have a shorter OS than those with low expression of CST4 (HR = 1.85,95%CI: 1.13-3.03, P = 0.015). Multivariate Cox regression analysis confirmed that the high expression level of CST4 was an independent prognostic risk factor for OS. CONCLUSIONS: Our findings suggest that CST4 could serve as a tumor marker that affects the prognosis of GC and could be considered as a potential therapeutic target for GC.


Subject(s)
Cystatins , Stomach Neoplasms , Humans , Prognosis , Stomach Neoplasms/pathology , Gene Regulatory Networks , Nomograms , Cystatins/genetics
12.
Viruses ; 15(8)2023 08 17.
Article in English | MEDLINE | ID: mdl-37632093

ABSTRACT

Porcine sapelovirus (PSV) is a ubiquitous virus in farmed pigs that is associated with SMEDI syndrome, polioencephalomyelitis, and diarrhea. However, there are few reports on the prevalence and molecular characterization of PSV in Fujian Province, Southern China. In this study, the prevalence of PSV and a poetical combinative strain PSV2020 were characterized using real-time PCR, sequencing, and bioinformatics analysis. As a result, an overall sample prevalence of 30.8% was detected in 260 fecal samples, and a farm prevalence of 76.7% was observed in 30 Fujian pig farms, from 2020 to 2022. Noteably, a high rate of PSV was found in sucking pigs. Bioinformatics analysis showed that the full-length genome of PSV2020 was 7550 bp, and the genetic evolution of its ORF region was closest to the G1 subgroup, which was isolated from Asia and America; the similarity of nucleotides and amino acids to other PSVs was 59.5~88.7% and 51.7~97.0%, respectively. However, VP1 genetic evolution analysis showed a distinct phylogenetic topology from the ORF region; PSV2020 VP1 was closer to the DIAPD5469-10 strain isolated from Italy than strains isolated from Asia and America, which comprise the G1 subgroup based on the ORF region. Amino acid discrepancy analysis illustrated that the PSV2020 VP1 gene inserted twelve additional nucleotides, corresponding to four additional amino acids (STAE) at positions 898-902 AAs. Moreover, a potential recombination signal was observed in the 2A coding region, near the 3' end of VP1, owing to recombination analysis. Additionally, 3D genetic evolutionary analysis showed that all reference strains demonstrated, to some degree, regional conservation. These results suggested that PSV was highly prevalent in Fujian pig farms, and PSV2020, a PSV-1 genotype strain, showed gene diversity and recombination in evolutionary progress. This study also laid a scientific foundation for the investigation of PSV epidemiology, molecular genetic characteristics, and vaccine development.


Subject(s)
Amino Acids , Enteroviruses, Porcine , Swine , Animals , Prevalence , Farms , Phylogeny , China/epidemiology , Genetic Variation , Recombination, Genetic
13.
J Alzheimers Dis ; 95(2): 469-475, 2023.
Article in English | MEDLINE | ID: mdl-37545231

ABSTRACT

BACKGROUND: Recently, Sigma nonopioid intracellular receptor 1 (SIGMAR1) variants have been shown harboring C9orf72 pathogenic repeat expansions in some frontotemporal dementia (FTD) cases. However, no SIGMAR1 genotype analysis has been reported in a cohort absent of C9orf72 pathogenic repeat expansions to date. OBJECTIVE: The present study investigated the contribution of SIGMAR1 independent of C9orf72 gene status to FTD spectrum syndromes. METHODS: We directly sequencing the entire coding region and a minimum of 50 bp from each of the flanking introns of SIGMAR1 gene in 82 sporadic FTD patients (female: male = 42 : 40) and 417 controls. For the patient carrying SIGMAR1 variant, a follow-up 3T MR imaging was performed in the study. RESULTS: Gene sequencing of SIGMAR1 revealed a rare 3'UTR nucleotide variation rs192856872 in a male patient with semantic dementia independent of C9orf72 gene status. The MR imaging showed asymmetrical atrophy in the anterior temporal lobes and the degeneration extends caudally into the posterior temporal lobes as the disease progresses. ESEFinder analysis showed new SRSF1 and SRSF1-IgM-BRCA1 binding sites with significant scores, which is predicted to affect normal splicing. CONCLUSION: We found a novel SIGMAR1 variant independent of C9orf72 gene status associated with semantic dementia phenotype.


Subject(s)
Frontotemporal Dementia , Female , Humans , Male , Atrophy , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Magnetic Resonance Imaging , Neuroimaging , Serine-Arginine Splicing Factors/genetics , Sigma-1 Receptor
14.
J Agric Food Chem ; 71(32): 12333-12345, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37534702

ABSTRACT

In this project, quinoline and quinolone-containing hydrazide compounds were designed and synthesized by introducing a bioactive hydrazide group into the skeleton of waltherione F. The fungicidal activity revealed that some hydrazide compounds exhibited excellent and broad-spectrum fungicidal activity; especially, compounds E8, E12, and E16 showed more than 90% or even 100% inhibition rates against most pathogens at 50 µg·mL-1. The fungicidal mechanism indicated that compound E8 may affect the normal function of the plasma membrane, further generating changes in the morphology and subcellular structure of mycelia. Simultaneously, Fusarium graminearum may resist the E8-treated stress through the metabolic pathways related to l-glutamate, l-glutamine, and glutathione. Finally, the effect of compound E8 on wheat seedling's growth and the toxicity to zebrafish were accomplished. These results will provide important guidance to discover novel fungicidal lead compounds and explore new targets, which are effective ways to alleviate the increasingly severe drug resistance.


Subject(s)
Alkaloids , Fungicides, Industrial , Quinolones , Animals , Hydrazines , Zebrafish , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Structure-Activity Relationship
15.
Org Lett ; 25(16): 2939-2943, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37078609

ABSTRACT

We report a new serine/threonine ligation (STL)-assisted diaminodiacid (DADA) strategy for the flexible construction of disulfide surrogates by the option of more abundant -Aa-Ser/Thr- ligation sites. The practicality of this strategy was evidenced by the synthesis of the intrachain disulfide surrogate of C-type natriuretic peptide and the interchain disulfide surrogate of insulin.


Subject(s)
Serine , Threonine , Disulfides , Peptides
16.
Proc Natl Acad Sci U S A ; 120(10): e2216062120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36857348

ABSTRACT

SERRATE (SE) is a core protein for microRNA (miRNA) biogenesis as well as for mRNA alternative splicing. Investigating the regulatory mechanism of SE expression is hence critical to understanding its detailed function in diverse biological processes. However, little about the control of SE expression has been clarified, especially through long noncoding RNA (lncRNA). Here, we identified an antisense intragenic lncRNA transcribed from the 3' end of SE, named SEAIRa. SEAIRa repressed SE expression, which in turn led to serrated leaves. SEAIRa recruited plant U-box proteins PUB25/26 with unreported RNA binding ability and a ubiquitin-like protein related to ubiquitin 1 (RUB1) for H2A monoubiquitination (H2Aub) at exon 11 of SE. In addition, PUB25/26 helped cleave SEAIRa and release the 5' domain fragment, which recruited the PRC2 complex for H3 lysine 27 trimethylation (H3K27me3) deposition at the first exon of SE. The distinct modifications of H2Aub and H3K27me3 at different sites of the SE locus cooperatively suppressed SE expression. Collectively, our results uncover an epigenetic mechanism mediated by the lncRNA SEAIRa that modulates SE expression, which is indispensable for plant growth and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Epigenetic Repression , RNA, Long Noncoding , RNA-Binding Proteins , Epigenesis, Genetic , Histones , RNA, Long Noncoding/genetics , Arabidopsis Proteins/genetics , RNA-Binding Proteins/genetics
19.
Theriogenology ; 201: 30-40, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36827867

ABSTRACT

In oocytes, the cytoplasmic polyadenylation and maternal mRNAs translation is regulated by cis-elements, including polyadenylation signal (PAS) and cytoplasmic polyadenylation element (CPE) in 3'-UTR. Recent studies illustrate non-canonical polyadenylation mechanisms of translational regulation in mouse oocytes, which is different from that in Xenopus oocytes. However, it is still unclear if this regulation in rodent oocytes functions in the domestic animal oocyte. Here, by using sheep as an animal model, we cloned the 3'-UTRs of Cpeb1 or Btg4 and ligated it into the pRK5-Flag-Gfp vector. Variant numbers and positions of PASs and CPEs within the 3'-UTRs were constructed to detect their effects on translational control. After in vitro-transcription and microinjection into sheep fully grown germinal vesicle stage oocytes, the expression efficiency of mRNAs was detected by the GFP and flag expression. Our results show that: (i) PAS located at the proximal end of 3'-UTR can mediate the translation of the maternal mRNAs, as long as they locate far from CPEs; (ii) The proximal PAS has higher efficiency in regulating transcription than the distal one; (iii) increase of PAS number can promote the translational activity more efficiently; (iv) a single CPE located close to PAS (<50 bp) in 3'-UTRs of Cpeb1 or Btg4 could partially repress translation. In 3'-UTRs of Btg4, two CPEs have a higher inhibitory effect, and three CPEs can completely inhibit mRNA translation. These results confirm the existence of the non-canonical mechanism in domestic animal oocytes.


Subject(s)
Polyadenylation , Protein Biosynthesis , Animals , Mice , Sheep/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Oocytes/metabolism , Cytoplasm/metabolism , Untranslated Regions , 3' Untranslated Regions
20.
J Agric Food Chem ; 71(1): 920-933, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36534960

ABSTRACT

The development of new green fungicides is an effective way to solve the resistance of agricultural pathogens and plays an important role in promoting high-quality and sustainable development of modern agriculture. In this project, a series of aryloxy-, arylthio-, and arylamino-containing acethydrazide derivatives were designed, synthesized, and characterized by 1H nuclear magnetic resonance (NMR), 13C NMR, and high-resolution mass spectrometry (HRMS). The fungicidal bioassays indicated that some compounds showed excellent and broad-spectrum fungicidal activity, and the structure-activity relationship was discussed. The in vivo fungicidal activity demonstrated that compounds C4 and D8 exhibited good preventative effects against Fusarium graminearum infecting wheat leaves, of which the preventative activity of compound D8 was almost equal to that of the positive agents. Transmission electron microscopy (TEM) observation revealed that the plasma membrane in the C4-treated F. graminearum hyphal cells was severely contracted and separated with the cell wall, coupling with the visible lysosomes and the disappeared cytoplasm and organelles, which may be the reasons for the shriveled and even ruptured hyphae observed by scanning electron microscopy (SEM). Subsequently, transcriptomics and metabolomics were performed to further elucidate the fungicidal mechanism. The regulatory networks of differential genes and metabolites in plasma membrane-related sphingolipid metabolism, linoleic acid metabolism, α-linoleic acid metabolism, and arachidonic acid metabolism were constructed and elaborated. Additionally, preliminary investigation of seeding growth suggested that compounds C4 and D8 may have different degrees of influence on the growth indicators of wheat seedlings; however, this effect may be negligible as the plant grows.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Linoleic Acid , Plant Diseases/prevention & control , Structure-Activity Relationship , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL