Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Exp Neurol ; 174(2): 150-61, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11922657

ABSTRACT

The mechanism responsible for the selective vulnerability of motor neurons in amyotrophic lateral sclerosis (ALS) is poorly understood. Several lines of evidence indicate that susceptibility of motor neurons to Ca(2+) overload induced by excitotoxic stimuli is involved. In this study, we investigated whether the high density of Ca(2+)-permeable AMPA receptors on motor neurons gives rise to higher Ca(2+) transients in motor neurons compared to dorsal horn neurons. Dorsal horn neurons were chosen as controls as these cells do not degenerate in ALS. In cultured spinal motor neurons, the rise of the cytosolic Ca(2+) concentration induced by kainic acid (KA) and mediated by the AMPA receptor was almost twice as high as in spinal neurons from the dorsal horn. Furthermore, we investigated whether increasing the motor neuron's cytosolic Ca(2+)-buffering capacity protects them from excitotoxic death. To obtain motor neurons with increased Ca(2+) buffering capacity, we generated transgenic mice overexpressing parvalbumin (PV). These mice have no apparent phenotype. PV overexpression was present in the central nervous system, kidney, thymus, and spleen. Motor neurons from these transgenic mice expressed PV in culture and were partially protected from KA-induced death as compared to those isolated from nontransgenic littermates. PV overexpression also attenuated KA-induced Ca(2+) transients, but not those induced by depolarization. We conclude that the high density of Ca(2+)-permeable AMPA receptors on the motor neuron's surface results in high Ca(2+) transients upon stimulation and that the low cytosolic Ca(2+)-buffering capacity of motor neurons may contribute to the selective vulnerability of these cells in ALS. Overexpression of a high-affinity Ca(2+) buffer such as PV protects the motor neuron from excitotoxicity and this protective effect depends upon the mode of Ca(2+) entry into the cell.


Subject(s)
Excitatory Amino Acid Agonists/toxicity , Motor Neurons/drug effects , Neurotoxins/toxicity , Parvalbumins/pharmacology , Amyotrophic Lateral Sclerosis/etiology , Animals , Blotting, Western , Calcium/metabolism , Calcium Signaling/drug effects , Cell Death/drug effects , Cells, Cultured , Cytoprotection/drug effects , Cytoprotection/genetics , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Kainic Acid/toxicity , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Neurons/cytology , Motor Neurons/metabolism , Organ Specificity , Parvalbumins/genetics , Parvalbumins/metabolism , Phenotype , Posterior Horn Cells/cytology , Posterior Horn Cells/drug effects , Posterior Horn Cells/metabolism , Receptors, AMPA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL