Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895346

ABSTRACT

Knowledge of the structures formed by proteins and small ligands is of fundamental importance for understanding molecular principles of chemotherapy and for designing new and more effective drugs. Due to the still high costs and to the several limitations of experimental techniques, it is most often desirable to predict these ligand-protein complexes in silico, particularly when screening for new putative drugs from databases of millions of compounds. While virtual screening based on molecular docking is widely used for this purpose, it generally fails in mimicking binding events associated with large conformational changes in the protein, particularly when the latter involve multiple domains. In this work, we describe a new methodology aimed at generating bound-like conformations of very flexible and allosteric proteins bearing multiple binding sites. Validation was performed on the enzyme adenylate kinase (ADK), a paradigmatic example of proteins that undergo very large conformational changes upon ligand binding. By only exploiting the unbound structure and the putative binding sites of the protein, we generated a significant fraction of bound-like structures, which employed in ensemble-docking calculations allowed to find native-like poses of substrates, inhibitors, and catalytically incompetent binders. Our protocol provides a general framework for the generation of bound-like conformations of flexible proteins that are suitable to host different ligands, demonstrating high sensitivity to the fine chemical details that regulate protein's activity. We foresee applications in virtual screening for difficult targets, prediction of the impact of amino acid mutations on structure and dynamics, and protein engineering.

2.
Commun Chem ; 7(1): 84, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609430

ABSTRACT

The ability Gram-negative pathogens have at adapting and protecting themselves against antibiotics has increasingly become a public health threat. Data-driven models identifying molecular properties that correlate with outer membrane (OM) permeation and growth inhibition while avoiding efflux could guide the discovery of novel classes of antibiotics. Here we evaluate 174 molecular descriptors in 1260 antimicrobial compounds and study their correlations with antibacterial activity in Gram-negative Pseudomonas aeruginosa. The descriptors are derived from traditional approaches quantifying the compounds' intrinsic physicochemical properties, together with, bacterium-specific from ensemble docking of compounds targeting specific MexB binding pockets, and all-atom molecular dynamics simulations in different subregions of the OM model. Using these descriptors and the measured inhibitory concentrations, we design a statistical protocol to identify predictors of OM permeation/inhibition. We find consistent rules across most of our data highlighting the role of the interaction between the compounds and the OM. An implementation of the rules uncovered in our study is shown, and it demonstrates the accuracy of our approach in a set of previously unseen compounds. Our analysis sheds new light on the key properties drug candidates need to effectively permeate/inhibit P. aeruginosa, and opens the gate to similar data-driven studies in other Gram-negative pathogens.

3.
Brain Imaging Behav ; 18(1): 141-158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37955809

ABSTRACT

To examine the corpus callosum's (CC) integrity in terms of fractional anisotropy (FA) and how it affects resting-state hemispheric connectivity (rs-IHC) and cognitive function in healthy individuals. Sixty-eight healthy individuals were recruited for the study. The global FA (gFA) and FA values of each CC tract (forceps minor, body, tapetum, and forceps major) were evaluated using diffusion-weighted imaging (DWI) sequences. The homotopic functional connectivity technique was used to quantify the effects of FA in the CC tracts on bilateral functional connectivity, including the confounding effect of gFA. Brain regions with higher or lower rs-IHC were identified using the threshold-free cluster enhancement family-wise error-corrected p-value of 0.05. The null hypothesis was rejected if the p-value was ≤ 0.05 for the nonparametric partial correlation technique. Several clusters of increased rs-IHC were identified in relation to the FA of individual CC tracts, each with a unique topographic distribution and extension. Only forceps minor FA values correlated with cognitive scores. The integrity of CC influences rs-IHC differently in healthy subjects. Specifically, forceps minor anisotropy impacts rs-IHC and cognition more than other CC tracts do.


Subject(s)
Corpus Callosum , Diffusion Tensor Imaging , Humans , Corpus Callosum/diagnostic imaging , Healthy Volunteers , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging , Cognition , Anisotropy
4.
J Chem Inf Model ; 63(15): 4924-4933, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37466559

ABSTRACT

The development of drugs targeting somatostatin receptor 2 (SSTR2), generally overexpressed in neuroendocrine tumors, is focus of intense research. A few molecules in conjugation with radionuclides are in clinical use for both diagnostic and therapeutic purposes. These radiopharmaceuticals are composed of a somatostatin analogue biovector conjugated to a chelator moiety bearing the radionuclide. To date, despite valuable efforts, a detailed molecular-level description of the interaction of radiopharmaceuticals in complex with SSTR2 has not yet been accomplished. Therefore, in this work, we carefully analyzed the key dynamical features and detailed molecular interactions of SSTR2 in complex with six radiopharmaceutical compounds selected among the few already in use (64Cu/68Ga-DOTATATE, 68Ga-DOTATOC, 64Cu-SARTATE) and some in clinical development (68Ga-DOTANOC, 64Cu-TETATATE). Through molecular dynamics simulations and exploiting recently available structures of SSTR2, we explored the influence of the different portions of the compounds (peptide, radionuclide, and chelator) in the interaction with the receptor. We identified the most stable binding modes and found distinct interaction patterns characterizing the six compounds. We thus unveiled detailed molecular interactions crucial for the recognition of this class of radiopharmaceuticals. The microscopically well-founded analysis presented in this study provides guidelines for the design of new potent ligands targeting SSTR2.


Subject(s)
Radiopharmaceuticals , Receptors, Somatostatin , Radiopharmaceuticals/chemistry , Molecular Dynamics Simulation , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/chemistry , Animals , Mice , Drug Design , Molecular Targeted Therapy
5.
mBio ; 14(4): e0140323, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37493633

ABSTRACT

Transporters of the resistance-nodulation-cell division (RND) superfamily of proteins are the dominant multidrug efflux power of Gram-negative bacteria. The major RND efflux pump of Pseudomonas aeruginosa is MexAB-OprM, in which the inner membrane transporter MexB is responsible for the recognition and binding of compounds. The high importance of this pump in clinical antibiotic resistance made it a subject of intense investigations and a promising target for the discovery of efflux pump inhibitors. This study is focused on a series of peptidomimetic compounds developed as effective inhibitors of MexAB-OprM. We performed multi-copy molecular dynamics simulations, machine-learning (ML) analyses, and site-directed mutagenesis of MexB to investigate interactions of MexB with representatives of efflux avoiders, substrates, and inhibitors. The analysis of both direct and water-mediated protein-ligand interactions revealed characteristic patterns for each class, highlighting significant differences between them. We found that efflux avoiders poorly interact with the access binding site of MexB, and inhibition engages amino acid residues that are not directly involved in binding and transport of substrates. In agreement, machine-learning models selected different residues predictive of MexB substrates and inhibitors. The differences in interactions were further validated by site-directed mutagenesis. We conclude that the substrate translocation and inhibition pathways of MexB split at the interface (between the main putative binding sites) and at the deep binding pocket and that interactions outside of the hydrophobic patch contribute to the inhibition of MexB. This molecular-level information could help in the rational design of new inhibitors and antibiotics less susceptible to the efflux mechanism. IMPORTANCE Multidrug transporters recognize and expel from cells a broad range of ligands including their own inhibitors. The difference between the substrate translocation and inhibition routes remains unclear. In this study, machine learning and computational and experimental approaches were used to understand dynamics of MexB interactions with its ligands. Our results show that some ligands engage a certain combination of polar and charged residues in MexB binding sites to be effectively expelled into the exit funnel, whereas others engage aromatic and hydrophobic residues that slow down or hinder the next step in the transporter cycle. These findings suggest that all MexB ligands fit into this substrate-inhibitor spectrum depending on their physico-chemical structures and properties.


Subject(s)
Bacterial Outer Membrane Proteins , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Bacterial Outer Membrane Proteins/metabolism , Ligands , Microbial Sensitivity Tests , Membrane Transport Proteins/metabolism
6.
Sci Rep ; 13(1): 4768, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959237

ABSTRACT

The cyclic peptide hormone somatostatin regulates physiological processes involved in growth and metabolism, through its binding to G-protein coupled somatostatin receptors. The isoform 2 (SSTR2) is of particular relevance for the therapy of neuroendocrine tumours for which different analogues to somatostatin are currently in clinical use. We present an extensive and systematic computational study on the dynamics of SSTR2 in three different states: active agonist-bound, inactive antagonist-bound and apo inactive. We exploited the recent burst of SSTR2 experimental structures to perform µs-long multi-copy molecular dynamics simulations to sample conformational changes of the receptor and rationalize its binding to different ligands (the agonists somatostatin and octreotide, and the antagonist CYN154806). Our findings suggest that the apo form is more flexible compared to the holo ones, and confirm that the extracellular loop 2 closes upon the agonist octreotide but not upon the antagonist CYN154806. Based on interaction fingerprint analyses and free energy calculations, we found that all peptides similarly interact with residues buried into the binding pocket. Conversely, specific patterns of interactions are found with residues located in the external portion of the pocket, at the basis of the extracellular loops, particularly distinguishing the agonists from the antagonist. This study will help in the design of new somatostatin-based compounds for theranostics of neuroendocrine tumours.


Subject(s)
Neuroendocrine Tumors , Receptors, Somatostatin , Humans , Receptors, Somatostatin/metabolism , Octreotide/therapeutic use , Somatostatin/metabolism , GTP-Binding Proteins/metabolism , Ligands , Neuroendocrine Tumors/drug therapy
7.
Microbiology (Reading) ; 169(3)2023 03.
Article in English | MEDLINE | ID: mdl-36972322

ABSTRACT

Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of 'molecular guns' known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, in silico studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein-lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.


Subject(s)
Anti-Bacterial Agents , Membrane Transport Proteins , Humans , Membrane Transport Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biological Transport , Drug Resistance, Multiple, Bacterial/genetics , Cell Division , Bacterial Proteins/metabolism
8.
Front Pharmacol ; 13: 1021916, 2022.
Article in English | MEDLINE | ID: mdl-36438787

ABSTRACT

The secondary transporters of the resistance-nodulation-cell division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria like Pseudomonas aeruginosa. Among these RND transporters, MexB, MexF, and MexY, with partly overlapping specificities, have been implicated in pathogenicity. Only the structure of the former has been resolved experimentally, which together with the lack of data about the functional dynamics of the full set of transporters, limited a systematic investigation of the molecular determinants defining their peculiar and shared features. In a previous work (Ramaswamy et al., Front. Microbiol., 2018, 9, 1144), we compared at an atomistic level the two main putative recognition sites (named access and deep binding pockets) of MexB and MexY. In this work, we expand the comparison by performing extended molecular dynamics (MD) simulations of these transporters and the pathologically relevant transporter MexF. We employed a more realistic model of the inner phospholipid membrane of P. aeruginosa and more accurate force-fields. To elucidate structure/dynamics-activity relationships we performed physico-chemical analyses and mapped the binding propensities of several organic probes on all transporters. Our data revealed the presence, also in MexF, of a few multifunctional sites at locations equivalent to the access and deep binding pockets detected in MexB. Furthermore, we report for the first time about the multidrug binding abilities of two out of five gates of the channels deputed to peripheral (early) recognition of substrates. Overall, our findings help to define a common "recognition topology" characterizing Mex transporters, which can be exploited to optimize transport and inhibition propensities of antimicrobial compounds.

9.
Commun Biol ; 5(1): 1062, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36203030

ABSTRACT

Sufficient concentration of antibiotics close to their target is key for antimicrobial action. Among the tools exploited by bacteria to reduce the internal concentration of antibiotics, multidrug efflux pumps stand out for their ability to capture and expel many unrelated compounds out of the cell. Determining the specificities and efflux efficiency of these pumps towards their substrates would provide quantitative insights into the development of antibacterial strategies. In this light, we developed a competition efflux assay on whole cells, that allows measuring the efficacy of extrusion of clinically used quinolones in populations and individual bacteria. Experiments reveal the efficient competitive action of some quinolones that restore an active concentration of other fluoroquinolones. Computational methods show how quinolones interact with the multidrug efflux transporter AcrB. Combining experiments and computations unveils a key molecular mechanism acting in vivo to detoxify bacterial cells. The developed assay can be generalized to the study of other efflux pumps.


Subject(s)
Escherichia coli Proteins , Fluoroquinolones , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Escherichia coli Proteins/metabolism , Fluoroquinolones/pharmacology , Membrane Transport Proteins , Multidrug Resistance-Associated Proteins/chemistry
10.
Phys Chem Chem Phys ; 24(27): 16566-16575, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35766032

ABSTRACT

The drug/proton antiporter MexB is the engine of the major efflux pump MexAB-OprM in Pseudomonas aeruginosa. This protein is known to transport a large variety of compounds, including antibiotics, thus conferring a multi-drug resistance phenotype. Due to the difficulty of producing co-crystals, only two X-ray structures of MexB in a complex with ligands are available to date, and mechanistic aspects are largely hypothesized based on the body of data collected for the homologous protein AcrB of Escherichia coli. In particular, a recent study (Ornik-Cha, Wilhelm, Kobylka et al., Nat. Commun., 2021, 12, 6919) reported a co-crystal structure of AcrB in a complex with levofloxacin, an antibiotic belonging to the important class of (fluoro)-quinolones. In this work, we performed a systematic ensemble docking campaign coupled to the cluster analysis and molecular-mechanics optimization of docking poses to study the interaction between 36 quinolone antibiotics and MexB. We additionally investigated surface complementarity between each molecule and the transporter and thoroughly assessed the computational protocol adopted against the known experimental data. Our study reveals different binding preferences of the investigated compounds towards the sub-sites of the large deep binding pocket of MexB, supporting the hypothesis that MexB substrates oscillate between different binding modes with similar affinity. Interestingly, small changes in the molecular structure translate into significant differences in MexB-quinolone interactions. All the predicted binding modes are available for download and visualization at the following link: https://www.dsf.unica.it/dock/mexb/quinolones.


Subject(s)
Escherichia coli Proteins , Quinolones , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/metabolism , Pseudomonas aeruginosa/metabolism
11.
Eur J Med Chem ; 236: 114306, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35421658

ABSTRACT

The development of inhibitors of key biological mechanisms involved in multidrug resistance (MDR) burden meets an important medical need but still represents a challenging task. Major MDR targets in both bacterial and cancer cells are multidrug efflux systems. Several aspects should be considered in the attempt to design efficient inhibitors of these systems such as toxicity, stability, permeability as a few examples. In order to successfully design promising new compounds, a full understanding of the efflux mechanism is required, from both biological and structural points of view. It is nowadays well established that the success rate in classical drug design and biological evaluation improves when combined with in silico methodologies. In this review, we focus on the biological evaluation and molecular mechanistic insights of inhibitors of the drug efflux activity of the Hedgehog receptor Patched1 (Ptch1). Ptch1 is known to be over-expressed in many types of cancers, but its activity and role in the resistance to chemotherapy of cancer cells have been highlighted only recently. Remarkably, due to its peculiar efflux mechanism, inhibition of Ptch1 was shown to be particularly relevant for improving the efficacy of chemotherapy without concomitant toxicity for healthy cells or potential side effects. To date, three compounds have been identified as efficient Ptch1 inhibitors, namely astemizole, methiothepin and panicein A hydroquinone. Due to the chemical and structural differences of these molecules, the hit-to-lead drug design is not straightforward. This review describes how the merging of in vitro, in vivo and in silico studies provides molecular details that could contribute to the rational design of new Ptch1 inhibitors.


Subject(s)
Hedgehog Proteins , Neoplasms , Patched-1 Receptor , Drug Design , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , Neoplasms/drug therapy
12.
Sci Data ; 9(1): 148, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365662

ABSTRACT

Antibiotic resistance is a major threat to public health. The development of chemo-informatic tools to guide medicinal chemistry campaigns in the efficint design of antibacterial libraries is urgently needed. We present AB-DB, an open database of all-atom force-field parameters, molecular dynamics trajectories, quantum-mechanical properties, and curated physico-chemical descriptors of antimicrobial compounds. We considered more than 300 molecules belonging to 25 families that include the most relevant antibiotic classes in clinical use, such as ß-lactams and (fluoro)quinolones, as well as inhibitors of key bacterial proteins. We provide traditional descriptors together with properties obtained with Density Functional Theory calculations. Noteworthy, AB-DB contains less conventional descriptors extracted from µs-long molecular dynamics simulations in explicit solvent. In addition, for each compound we make available force-field parameters for the major micro-species at physiological pH. With the rise of multi-drug-resistant pathogens and the consequent need for novel antibiotics, inhibitors, and drug re-purposing strategies, curated databases containing reliable and not straightforward properties facilitate the integration of data mining and statistics into the discovery of new antimicrobials.


Subject(s)
Anti-Infective Agents , Molecular Dynamics Simulation
13.
Comput Struct Biotechnol J ; 20: 252-260, 2022.
Article in English | MEDLINE | ID: mdl-35024097

ABSTRACT

Efflux pumps of the Resistance-Nodulation-cell Division (RND) superfamily contribute to intrinsic and acquired resistance in Gram-negative pathogens by expelling chemically unrelated antibiotics with high efficiency. They are tripartite systems constituted by an inner-membrane-anchored transporter, an outer membrane factor protein, and a membrane fusion protein. Multimerization of the membrane fusion protein is an essential prerequisite for full functionality of these efflux pumps. In this work, we employed complementary computational techniques to investigate the stability of a dimeric unit of MexA (the membrane fusion protein of the MexAB-OprM RND efflux pump of Pseudomonas aeruginosa), and to provide a molecular rationale for the effect of the G72S substitution, which affects MexAB-OprM functionality by impairing the assembly of MexA. Our findings indicate that: i) dimers of this protein are stable in multiple µs-long molecular dynamics simulations; ii) the mutation drastically alters the conformational equilibrium of MexA, favouring a collapsed conformation that is unlikely to form dimers or higher order assemblies. Unveiling the mechanistic aspects underlying large conformational distortions induced by minor sequence changes is informative to efforts at interfering with the activity of this elusive bacterial weapon. In this respect, our work further confirms how molecular simulations can give important contribution and useful insights to characterize the mechanism of highly complex biological systems.

14.
Front Chem ; 10: 1059593, 2022.
Article in English | MEDLINE | ID: mdl-36700074

ABSTRACT

The seamless integration of human disease-related mutation data into protein structures is an essential component of any attempt to correctly assess the impact of the mutation. The key step preliminary to any structural modelling is the identification of the isoforms onto which mutations should be mapped due to there being several functionally different protein isoforms from the same gene. To handle large sets of data coming from omics techniques, this challenging task needs to be automatized. Here we present the MoNvIso (Modelling eNvironment for Isoforms) code, which identifies the most useful isoform for computational modelling, balancing the coverage of mutations of interest and the availability of templates to build a structural model of both the wild-type isoform and the related variants.

15.
ACS Infect Dis ; 7(9): 2650-2665, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34379382

ABSTRACT

Antibiotic resistance poses an immediate and growing threat to human health. Multidrug efflux pumps are promising targets for overcoming antibiotic resistance with small-molecule therapeutics. Previously, we identified a diaminoquinoline acrylamide, NSC-33353, as a potent inhibitor of the AcrAB-TolC efflux pump in Escherichia coli. This inhibitor potentiates the antibacterial activities of novobiocin and erythromycin upon binding to the membrane fusion protein AcrA. It is also a substrate for efflux and lacks appreciable intrinsic antibacterial activity of its own in wild-type cells. Here, we have modified the substituents of the cinnamoyl group of NSC-33353, giving rise to analogs that retain the ability to inhibit efflux, lost the features of the efflux substrates, and gained antibacterial activity in wild-type cells. The replacement of the cinnamoyl group with naphthyl isosteres generated compounds that lack antibacterial activity but are both excellent efflux pump inhibitors and substrates. Surprisingly, these inhibitors potentiate the antibacterial activity of novobiocin but not erythromycin. Surface plasmon resonance experiments and molecular docking suggest that the replacement of the cinnamoyl group with naphthyl shifts the affinity of the compounds away from AcrA to the AcrB transporter, making them better efflux substrates and changing their mechanism of inhibition. These results provide new insights into the duality of efflux substrate/inhibitor features in chemical scaffolds that will facilitate the development of new efflux pump inhibitors.


Subject(s)
Escherichia coli Proteins , Amides/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/genetics
16.
Curr Opin Microbiol ; 61: 115-123, 2021 06.
Article in English | MEDLINE | ID: mdl-33940284

ABSTRACT

All mechanisms of clinical antibiotic resistance benefit from activities of polyspecific efflux pumps acting to reduce intracellular accumulation of toxins and antibiotics. In Gram-negative bacteria, the major polyspecific efflux transporters belong to the Resistance-Nodulation-cell Division (RND) superfamily of proteins, which are capable of expelling thousands of structurally diverse compounds. Recent structural and functional advances generated novel insights into mechanisms underlying the biochemical versatility of RND transporters. This opinion article reviews these mechanisms and discusses implications of the polyspecificity of RND transporters for bacterial survival and for the development of efflux pump inhibitors effective in clinics.


Subject(s)
Gram-Negative Bacteria , Membrane Transport Proteins , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Drug Resistance, Microbial , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism
17.
Phys Chem Chem Phys ; 23(13): 8013-8022, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33522520

ABSTRACT

Human Hedgehog receptor Patched1 (PTCH1) is able to efflux chemotherapeutics of different chemical structure out of cancer cells thus contributing to multidrug resistance phenomena in tumor treatment. A screening of natural compounds purified from marine sponges led to the identification of the first PTCH1 efflux inhibitor, panicein A hydroquinone (PAH), demonstrated to increase doxorubicin toxicity in vitro and vemurafenib toxicity in vitro and in vivo. In this work we combined different computational techniques to gain molecular insights of the inhibitory activity of PAH and some of its active and inactive analogues. We first performed a thorough characterization and druggability analysis of the main putative substrate binding pockets known from available cryo-electron microscopy structures. Further, dynamical descriptors of the active and inactive PAH analogues were extracted from microsecond-long all-atom molecular dynamics simulations in water solution. Finally, a blind ensemble docking methodology coupled with the conformational analysis of compounds enabled rationalization of the interaction between PTCH1 and PAH and derivatives in terms of their intrinsic physico-chemical properties. Our results suggest that the Neck pocket is the preferential binding site for PAH analogues on PTCH1, and that compounds assuming an open cylindric-like shape in solution are most likely to be good binders for PTCH1.


Subject(s)
Benzoquinones/metabolism , Hydroquinones/metabolism , Patched-1 Receptor/metabolism , Benzoquinones/chemistry , Binding Sites , Humans , Hydroquinones/chemistry , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Patched-1 Receptor/chemistry , Protein Binding
18.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33468691

ABSTRACT

Antibiotic-resistant bacteria rapidly spread in clinical and natural environments and challenge our modern lifestyle. A major component of defense against antibiotics in Gram-negative bacteria is a drug permeation barrier created by active efflux across the outer membrane. We identified molecular determinants defining the propensity of small peptidomimetic molecules to avoid and inhibit efflux pumps in Pseudomonas aeruginosa, a human pathogen notorious for its antibiotic resistance. Combining experimental and computational protocols, we mapped the fate of the compounds from structure-activity relationships through their dynamic behavior in solution, permeation across both the inner and outer membranes, and interaction with MexB, the major efflux transporter of P. aeruginosa We identified predictors of efflux avoidance and inhibition and demonstrated their power by using a library of traditional antibiotics and compound series and by generating new inhibitors of MexB. The identified predictors will enable the discovery and optimization of antibacterial agents suitable for treatment of P. aeruginosa infections.IMPORTANCE Efflux pump avoidance and inhibition are desired properties for the optimization of antibacterial activities against Gram-negative bacteria. However, molecular and physicochemical interactions defining the interface between compounds and efflux pumps remain poorly understood. We identified properties that correlate with efflux avoidance and inhibition, are predictive of similar features in structurally diverse compounds, and allow researchers to distinguish between efflux substrates, inhibitors, and avoiders in P. aeruginosa The developed predictive models are based on the descriptors representative of different clusters comprising a physically intuitive combination of properties. Molecular shape (represented by acylindricity), amphiphilicity (anisotropic polarizability), aromaticity (number of aromatic rings), and the partition coefficient (LogD) are physicochemical predictors of efflux inhibitors, whereas interactions with Pro668 and Leu674 residues of MexB distinguish between inhibitors/substrates and efflux avoiders. The predictive models and efflux rules are applicable to compounds with unrelated chemical scaffolds and pave the way for development of compounds with the desired efflux interface properties.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Membrane Transport Proteins/chemistry , Models, Biological , Peptidomimetics/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Binding Sites , Biological Transport/drug effects , Gene Expression , Kinetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Models, Molecular , Peptidomimetics/chemical synthesis , Peptidomimetics/metabolism , Principal Component Analysis , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Structure-Activity Relationship , Thermodynamics
19.
Nat Commun ; 11(1): 5565, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149158

ABSTRACT

Resistance-nodulation-division efflux pumps play a key role in inherent and evolved multidrug resistance in bacteria. AcrB, a prototypical member of this protein family, extrudes a wide range of antimicrobial agents out of bacteria. Although high-resolution structures exist for AcrB, its conformational fluctuations and their putative role in function are largely unknown. Here, we determine these structural dynamics in the presence of substrates using hydrogen/deuterium exchange mass spectrometry, complemented by molecular dynamics simulations, and bacterial susceptibility studies. We show that an efflux pump inhibitor potentiates antibiotic activity by restraining drug-binding pocket dynamics, rather than preventing antibiotic binding. We also reveal that a drug-binding pocket substitution discovered within a multidrug resistant clinical isolate modifies the plasticity of the transport pathway, which could explain its altered substrate efflux. Our results provide insight into the molecular mechanism of drug export and inhibition of a major multidrug efflux pump and the directive role of its dynamics.


Subject(s)
Ciprofloxacin/pharmacology , Dipeptides/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Membrane Proteins/chemistry , Multidrug Resistance-Associated Proteins/chemistry , Protein Kinases/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites/genetics , Biological Transport, Active/drug effects , Biological Transport, Active/genetics , Ciprofloxacin/chemistry , Circular Dichroism , Deuterium/chemistry , Dipeptides/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Ligands , Mass Spectrometry/methods , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Mutation , Protein Kinases/genetics , Protein Kinases/metabolism
20.
mBio ; 11(3)2020 06 02.
Article in English | MEDLINE | ID: mdl-32487753

ABSTRACT

Efflux is an important mechanism in Gram-negative bacteria conferring multidrug resistance. Inhibition of efflux is an encouraging strategy to restore the antibacterial activity of antibiotics. Chlorpromazine and amitriptyline have been shown to behave as efflux inhibitors. However, their mode of action is poorly understood. Exposure of Salmonella enterica serovar Typhimurium and Escherichia coli to chlorpromazine selected for mutations within genes encoding RamR and MarR, regulators of the multidrug tripartite efflux pump AcrAB-TolC. Further experiments with S. Typhimurium containing AcrB D408A (a nonfunctional efflux pump) and chlorpromazine or amitriptyline resulted in the reversion of the mutant acrB allele to the wild type. Together, this suggests these drugs are AcrB efflux substrates. Subsequent docking studies with AcrB from S. Typhimurium and E. coli, followed by molecular dynamics simulations and free energy calculations showed that chlorpromazine and amitriptyline bind at the hydrophobic trap, a preferred binding site for substrates and inhibitors within the distal binding pocket of AcrB. Based on these simulations, we suggest that chlorpromazine and amitriptyline inhibit AcrB-mediated efflux by interfering with substrate binding. Our findings provide evidence that these drugs are substrates and inhibitors of AcrB, yielding molecular details of their mechanism of action and informing drug discovery of new efflux inhibitors.IMPORTANCE Efflux pumps of the resistance nodulation-cell division (RND) superfamily are major contributors to multidrug resistance for most of the Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. The development of inhibitors of these pumps would be highly desirable; however, several issues have thus far hindered all efforts at designing new efflux inhibitory compounds devoid of adverse effects. An alternative route to de novo design relies on the use of marketed drugs, for which side effects on human health have been already assessed. In this work, we provide experimental evidence that the antipsychotic drugs chlorpromazine and amitriptyline are inhibitors of the AcrB transporter, the engine of the major RND efflux pumps in Escherichia coli and Salmonella enterica serovar Typhimurium. Furthermore, in silico calculations have provided a molecular-level picture of the inhibition mechanism, allowing rationalization of experimental data and paving the way for similar studies with other classes of marketed compounds.


Subject(s)
Amitriptyline/pharmacology , Bacterial Proteins/antagonists & inhibitors , Chlorpromazine/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/genetics , Mutation , Protein Binding , Salmonella enterica/drug effects , Salmonella enterica/genetics
SELECTION OF CITATIONS
SEARCH DETAIL