Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Leukoc Biol ; 114(2): 180-186, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37075217

ABSTRACT

Chitin is a highly abundant N-acetylglucosamine polysaccharide that has been linked to immune responses in the context of fungal infections and allergic asthma, especially to T helper 2 immune responses. Unfortunately, due to the frequent use of crude chitin preparations of unknown purity and degree of polymerization, there is still great uncertainty about how chitin activates different parts of the human immune system. We recently identified chitin oligomers of 6 N-acetylglucosamine units as the smallest immunologically active chitin motif and the innate immune receptor TLR2 as a primary chitin sensor on human and murine myeloid cells, but the response of further immune cells (e.g. lymphoid cells) to oligomeric chitin has not been investigated. Our analysis of primary human immune cells now shows that chitin oligomers activate immune responses of both innate and adaptive lymphocytes: notably, chitin oligomers activated natural killer cells but not B lymphocytes. Moreover, chitin oligomers induced maturation of dendritic cells and enabled potent CD8+ T-cell recall responses. Our results suggest that chitin oligomers not only trigger immediate innate responses in a limited range of myeloid cells but also exert critical activities across the entire human immune system. This highlights chitin oligomer immune activation as an interesting and broadly applicable potential target for both adjuvant development and therapeutic interference in chitin-mediated pathologies.


Subject(s)
Acetylglucosamine , Chitin , Humans , Animals , Mice , Chitin/pharmacology , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Antigen Presentation , Immunity, Innate
2.
Cells ; 11(21)2022 10 31.
Article in English | MEDLINE | ID: mdl-36359847

ABSTRACT

Elongated peptides (EPs), containing possibly one or multiple epitope/s, are increasingly used for the screening of antigen-specific CD8+ and CD4+ cell responses. Here, we present an in vitro protocol that allows the amplification of antigen-specific cells and the subsequent functional analysis of both T cell types using EPs. Known viral-derived epitopes were elongated to 20 mer EPs on the N-, C-, and both termini for HLA class I binders, or on the N- and C- termini for HLA class II binders. With EP stimulation only, the percentage of responding CD8+ T cells was dependent on the elongation site of the EP, whereas CD4+ T cell responses were completely lost in 22% of the tests performed ex vivo. A short-term amplification step plus the addition of a TLR3 agonist (Poly-ICLC) together with an increased EP concentration improved markedly the detection of CD8+ and CD4+ T cell reactivities.


Subject(s)
CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , CD4-Positive T-Lymphocytes , Peptides
3.
J Immunother Cancer ; 7(1): 307, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31730025

ABSTRACT

BACKGROUND: We previously showed that the bacterial lipopeptide Pam3Cys-Ser-Ser, meanwhile established as a toll-like receptor (TLR) 1/2 ligand, acts as a strong adjuvant for the induction of virus specific CD8+ T cells in mice, when covalently coupled to a synthetic peptide. CASE PRESENTATION: We now designed a new water-soluble synthetic Pam3Cys-derivative, named XS15 and characterized it in vitro by a TLR2 NF-κB luciferase reporter assay. Further, the capacity of XS15 to activate immune cells and stimulate peptide-specific CD8+ T and NK cells by 6-sulfo LacNAc+ monocytes was assessed by flow cytometry as well as cytokine induction using immunoassays. The induction of a functional immune response after vaccination of a volunteer with viral peptides was assessed by ELISpot assay and flow cytometry in peripheral blood cells and infiltrating cells at the vaccination site, as well as by immunohistochemistry and imaging. XS15 induced strong ex vivo CD8+ and TH1 CD4+ responses in a human volunteer upon a single injection of XS15 mixed to uncoupled peptides in a water-in-oil emulsion (Montanide™ ISA51 VG). A granuloma formed locally at the injection site containing highly activated functional CD4+ and CD8+ effector memory T cells. The total number of vaccine peptide-specific functional T cells was experimentally assessed and estimated to be 3.0 × 105 in the granuloma and 20.5 × 106 in peripheral blood. CONCLUSION: Thus, in one volunteer we show a granuloma forming by peptides combined with an efficient adjuvant in a water-in-oil-emulsion, inducing antigen specific T cells detectable in circulation and at the vaccination site, after one single vaccination only. The ex vivo T cell responses in peripheral blood were detectable for more than one year and could be strongly boosted by a second vaccination. Hence, XS15 is a promising adjuvant candidate for peptide vaccination, in particular for tumor peptide vaccines in a personalized setting.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Peptides/therapeutic use , Toll-Like Receptor 1/immunology , Toll-Like Receptor 2/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Granuloma/immunology , HEK293 Cells , Healthy Volunteers , Humans , Killer Cells, Natural/immunology , Ligands , Male , Middle Aged , Vaccination
5.
Nature ; 565(7738): 240-245, 2019 01.
Article in English | MEDLINE | ID: mdl-30568303

ABSTRACT

Patients with glioblastoma currently do not sufficiently benefit from recent breakthroughs in cancer treatment that use checkpoint inhibitors1,2. For treatments using checkpoint inhibitors to be successful, a high mutational load and responses to neoepitopes are thought to be essential3. There is limited intratumoural infiltration of immune cells4 in glioblastoma and these tumours contain only 30-50 non-synonymous mutations5. Exploitation of the full repertoire of tumour antigens-that is, both unmutated antigens and neoepitopes-may offer more effective immunotherapies, especially for tumours with a low mutational load. Here, in the phase I trial GAPVAC-101 of the Glioma Actively Personalized Vaccine Consortium (GAPVAC), we integrated highly individualized vaccinations with both types of tumour antigens into standard care to optimally exploit the limited target space for patients with newly diagnosed glioblastoma. Fifteen patients with glioblastomas positive for human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02 were treated with a vaccine (APVAC1) derived from a premanufactured library of unmutated antigens followed by treatment with APVAC2, which preferentially targeted neoepitopes. Personalization was based on mutations and analyses of the transcriptomes and immunopeptidomes of the individual tumours. The GAPVAC approach was feasible and vaccines that had poly-ICLC (polyriboinosinic-polyribocytidylic acid-poly-L-lysine carboxymethylcellulose) and granulocyte-macrophage colony-stimulating factor as adjuvants displayed favourable safety and strong immunogenicity. Unmutated APVAC1 antigens elicited sustained responses of central memory CD8+ T cells. APVAC2 induced predominantly CD4+ T cell responses of T helper 1 type against predicted neoepitopes.


Subject(s)
Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Glioblastoma/diagnosis , Glioblastoma/therapy , Precision Medicine/methods , Adult , Aged , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Female , Glioblastoma/immunology , HLA-A Antigens/immunology , Humans , Immunologic Memory/immunology , Male , Middle Aged , T-Lymphocytes, Helper-Inducer/immunology , Treatment Outcome
6.
Proc Natl Acad Sci U S A ; 115(24): E5536-E5545, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29844168

ABSTRACT

Immediate ß2-integrin activation upon T cell receptor stimulation is critical for effective interaction between T cells and their targets and may therefore be used for the rapid identification and isolation of functional T cells. We present a simple and sensitive flow cytometry-based assay to assess antigen-specific T cells using fluorescent intercellular adhesion molecule (ICAM)-1 multimers that specifically bind to activated ß2-integrins. The method is compatible with surface and intracellular staining; it is applicable for monitoring of a broad range of virus-, tumor-, and vaccine-specific CD8+ T cells, and for isolating viable antigen-reacting cells. ICAM-1 binding correlates with peptide-MHC multimer binding but, notably, it identifies the fraction of antigen-specific CD8+ T cells with immediate and high functional capability (i.e., expressing high levels of cytotoxic markers and cytokines). Compared with the currently available methods, staining of activated ß2-integrins presents the unique advantage of requiring activation times of only several minutes, therefore delivering functional information nearly reflecting the in vivo situation. Hence, the ICAM-1 assay is most suitable for rapid and precise monitoring of functional antigen-specific T cell responses, including for patient samples in a variety of clinical settings, as well as for the isolation of functional T cells for adoptive cell-transfer immunotherapies.


Subject(s)
Antigens/immunology , CD18 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Adolescent , Adoptive Transfer/methods , Adult , Humans , Immunotherapy, Adoptive/methods , Intercellular Adhesion Molecule-1/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , Young Adult
7.
Cytometry B Clin Cytom ; 94(2): 342-353, 2018 03.
Article in English | MEDLINE | ID: mdl-27363684

ABSTRACT

BACKGROUND: Validated assays are essential to generate data with defined specificity, consistency, and reliability. Although the process of validation is required for applying immunoassays in the context of clinical studies, reports on systematic validation of in vitro T cell assays are scarce so far. We recently validated our HLA-peptide multimer staining assay in a systematic manner so as to qualify the method for monitoring antigen-specific T cell responses after immunotherapy. METHODS: Parameters of the assay, specificity, precision, linearity, sensitivity, and robustness were assessed systematically. Experiments were designed to address specifically each parameter and are detailed. RESULTS: Nonspecific multimer staining was below the acceptance limit of 0.02% multimer(+) CD8(+) cells. The assay showed acceptable precision in all dimensions it was repeated (CV < 10%) and also demonstrated a linear detection (R2 > 0.99) of antigen specific cells. CONCLUSIONS: We succeeded in validating the HLA-multimer staining assay in a systematic manner. Additionally, we propose a technical framework and recommendations that can be applied for validating other T cell assessment methods. © 2016 International Clinical Cytometry Society.


Subject(s)
HLA Antigens/immunology , Peptides/immunology , CD8-Positive T-Lymphocytes/immunology , Humans , Immunoassay/methods , Immunotherapy/methods , Reproducibility of Results , Sensitivity and Specificity , Staining and Labeling/methods
8.
Stem Cell Rev Rep ; 13(2): 258-266, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28154962

ABSTRACT

Many controversial results exist when comparing mesenchymal stromal cells (MSCs) derived from different sources. Reasons include not only variables in tissue origin, but also methods of cell preparation or choice of expansion media which can strongly influence the expression and hence, function of the cells. In this short report we aimed to investigate the expression of the cell anchoring proteins desmoglein 2, desmocollin 3 and plakophilin 2 in early passage placenta-derived MSCs of fetal (fetal pMSCs) and maternal (maternal pMSCs) origins versus adult bone marrow-derived MSCs (bmMSCs) that were expanded and cultured under the same good manufacturing practice (GMP) conditions. Comprehensive gene expression microarray analysis profiling indicated differential expression of these genes in the different MSC-derived types with fetal pMSCs expressing the highest levels of PKP2, DSC3 and DSG2, followed by maternal pMSCs, while bmMSCs expressed the lowest levels. A higher expression of PKP2 and DSC3 genes in fetal pMSCs was confirmed by qRT-PCR suggesting neonatal increases in the expression of these desmosomal genes vs. adult MSCs. Intracellular desmocollin 3 and desmoglein 2 expression was observed by flow cytometry and cytoplasmic plakophilin 2 by immunofluorescence in all three MSC sources. These data suggest that fetal pMSCs, maternal pMSCs and bmMSCs may anchor intermediate filaments to the plasma membrane via desmocollin 3, desmoglein 2 and plakophilin 2.


Subject(s)
Desmocollins/genetics , Desmoglein 2/genetics , Gene Expression Profiling/methods , Mesenchymal Stem Cells/metabolism , Placenta/metabolism , Plakophilins/genetics , Adult , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Cells, Cultured , Desmocollins/metabolism , Desmoglein 2/metabolism , Female , Fetus/cytology , Fluorescent Antibody Technique , HeLa Cells , Humans , Oligonucleotide Array Sequence Analysis/methods , Placenta/cytology , Plakophilins/metabolism , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL