Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Acta Neuropathol ; 147(1): 28, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38305941

ABSTRACT

Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate a previously unknown role of innate immunity in SPG11-HSP. Neuropathological analysis of SPG11-HSP patient brain tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11-HSP patients, the ratio of peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyperactivation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an Spg11-/- mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11-HSP patients and constitute the first description of myeloid cell/ microglia activation in human SPG11-HSP. IFNγ/ STAT1-mediated neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may slow down disease progression.


Subject(s)
Spastic Paraplegia, Hereditary , Animals , Mice , Humans , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology , Neuroinflammatory Diseases , Proteins/genetics , Neurons/pathology , Mutation
2.
J Neurol ; 271(2): 782-793, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37803149

ABSTRACT

BACKGROUND: Progressive supranuclear palsy (PSP) is usually diagnosed in elderly. Currently, little is known about comorbidities and the co-medication in these patients. OBJECTIVES: To explore the pattern of comorbidities and co-medication in PSP patients according to the known different phenotypes and in comparison with patients without neurodegenerative disease. METHODS: Cross-sectional data of PSP and patients without neurodegenerative diseases (non-ND) were collected from three German multicenter observational studies (DescribePSP, ProPSP and DANCER). The prevalence of comorbidities according to WHO ICD-10 classification and the prevalence of drugs administered according to WHO ATC system were analyzed. Potential drug-drug interactions were evaluated using AiDKlinik®. RESULTS: In total, 335 PSP and 275 non-ND patients were included in this analysis. The prevalence of diseases of the circulatory and the nervous system was higher in PSP at first level of ICD-10. Dorsopathies, diabetes mellitus, other nutritional deficiencies and polyneuropathies were more frequent in PSP at second level of ICD-10. In particular, the summed prevalence of cardiovascular and cerebrovascular diseases was higher in PSP patients. More drugs were administered in the PSP group leading to a greater percentage of patients with polypharmacy. Accordingly, the prevalence of potential drug-drug interactions was higher in PSP patients, especially severe and moderate interactions. CONCLUSIONS: PSP patients possess a characteristic profile of comorbidities, particularly diabetes and cardiovascular diseases. The eminent burden of comorbidities and resulting polypharmacy should be carefully considered when treating PSP patients.


Subject(s)
Neurodegenerative Diseases , Supranuclear Palsy, Progressive , Humans , Aged , Supranuclear Palsy, Progressive/drug therapy , Supranuclear Palsy, Progressive/epidemiology , Supranuclear Palsy, Progressive/diagnosis , Neurodegenerative Diseases/epidemiology , Cross-Sectional Studies , Comorbidity
3.
Nat Med ; 30(1): 186-198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123840

ABSTRACT

The innate immune compartment of the human central nervous system (CNS) is highly diverse and includes several immune-cell populations such as macrophages that are frequent in the brain parenchyma (microglia) and less numerous at the brain interfaces as CNS-associated macrophages (CAMs). Due to their scantiness and particular location, little is known about the presence of temporally and spatially restricted CAM subclasses during development, health and perturbation. Here we combined single-cell RNA sequencing, time-of-flight mass cytometry and single-cell spatial transcriptomics with fate mapping and advanced immunohistochemistry to comprehensively characterize the immune system at human CNS interfaces with over 356,000 analyzed transcriptomes from 102 individuals. We also provide a comprehensive analysis of resident and engrafted myeloid cells in the brains of 15 individuals with peripheral blood stem cell transplantation, revealing compartment-specific engraftment rates across different CNS interfaces. Integrated multiomic and high-resolution spatial transcriptome analysis of anatomically dissected glioblastoma samples shows regionally distinct myeloid cell-type distributions driven by hypoxia. Notably, the glioblastoma-associated hypoxia response was distinct from the physiological hypoxia response in fetal microglia and CAMs. Our results highlight myeloid diversity at the interfaces of the human CNS with the periphery and provide insights into the complexities of the human brain's immune system.


Subject(s)
Glioblastoma , Humans , Multiomics , Central Nervous System , Microglia , Immunity, Innate/genetics , Hypoxia
4.
Int J Mol Sci ; 24(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37834373

ABSTRACT

The gut microbiome plays a pivotal role in maintaining human health, with numerous studies demonstrating that alterations in microbial compositions can significantly affect the development and progression of various immune-mediated diseases affecting both the digestive tract and the central nervous system (CNS). This complex interplay between the microbiota, the gut, and the CNS is referred to as the gut-brain axis. The role of the gut microbiota in the pathogenesis of neurodegenerative diseases has gained increasing attention in recent years, and evidence suggests that gut dysbiosis may contribute to disease development and progression. Clinical studies have shown alterations in the composition of the gut microbiota in multiple sclerosis patients, with a decrease in beneficial bacteria and an increase in pro-inflammatory bacteria. Furthermore, changes within the microbial community have been linked to the pathogenesis of Parkinson's disease and Alzheimer's disease. Microbiota-gut-brain communication can impact neurodegenerative diseases through various mechanisms, including the regulation of immune function, the production of microbial metabolites, as well as modulation of host-derived soluble factors. This review describes the current literature on the gut-brain axis and highlights novel communication systems that allow cross-talk between the gut microbiota and the host that might influence the pathogenesis of neuroinflammation and neurodegeneration.


Subject(s)
Microbiota , Neurodegenerative Diseases , Humans , Neuroinflammatory Diseases , Brain/metabolism , Central Nervous System/metabolism , Neurodegenerative Diseases/metabolism , Dysbiosis/metabolism
5.
Behav Brain Res ; 452: 114574, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37423320

ABSTRACT

Synucleinopathies are a group of neurodegenerative disorders, classically characterized by the accumulation of aggregated alpha synuclein (aSyn) in the central nervous system. Parkinson's disease (PD) and multiple system atrophy (MSA) are the two prominent members of this family. Current treatment options mainly focus on the motor symptoms of these diseases. However, non-motor symptoms, including gastrointestinal (GI) symptoms, have recently gained particular attention, as they are frequently associated with synucleinopathies and often arise before motor symptoms. The gut-origin hypothesis has been proposed based on evidence of an ascending spreading pattern of aggregated aSyn from the gut to the brain, as well as the comorbidity of inflammatory bowel disease and synucleinopathies. Recent advances have shed light on the mechanisms underlying the progression of synucleinopathies along the gut-brain axis. Given the rapidly expanding pace of research in the field, this review presents a summary of the latest findings on the gut-to-brain spreading of pathology and potential pathology-reinforcing mediators in synucleinopathies. Here, we focus on 1) gut-to-brain communication pathways, including neuronal pathways and blood circulation, and 2) potential molecular signalling mediators, including bacterial amyloid proteins, microbiota dysbiosis-induced alterations in gut metabolites, as well as host-derived effectors, including gut-derived peptides and hormones. We highlight the clinical relevance and implications of these molecular mediators and their possible mechanisms in synucleinopathies. Moreover, we discuss their potential as diagnostic markers in distinguishing the subtypes of synucleinopathies and other neurodegenerative diseases, as well as for developing novel individualized therapeutic options for synucleinopathies.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Synucleinopathies , Humans , Synucleinopathies/metabolism , Synucleinopathies/pathology , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Brain/metabolism , Neurons/metabolism
6.
Neurosci Lett ; 796: 137061, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36626960

ABSTRACT

The downstream regulatory element antagonist modulator (DREAM) modulates ion channel function and gene transcription. Functionally, DREAM is implicated in physiological and pathological processes including cell proliferation, inflammation, and nociception. Despite its multiple functions and robust expression in forebrain tissue, neurons and glial cells, the role of DREAM in regard to cellular plasticity and tumor necrosis factor (TNF)-mediated inflammation is largely unexplored. Here, we demonstrate that adult hippocampal neurogenesis as well as the density and plasticity of glial cells in the hippocampus and thalamus are independent of the presence of DREAM. Further, DREAM deletion does not alter the regional myeloid response and inflammatory gene expression induced by chronic peripheral inflammation in mice overexpressing human TNF. Our data suggest that despite their highly dynamic regulation, neural cell plasticity and adult neurogenesis in the hippocampus do not depend on the multifunctional protein DREAM. Furthermore, TNF-mediated myeloid inflammation in the brain persists in the absence of DREAM.


Subject(s)
Cell Plasticity , Repressor Proteins , Mice , Adult , Humans , Animals , Repressor Proteins/metabolism , Inflammation/metabolism , Hippocampus/metabolism , Prosencephalon/metabolism
7.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232412

ABSTRACT

Inflammatory bowel disease (IBD) comprises Crohn's disease (CD) and ulcerative colitis (UC) and is associated with neuropsychiatric symptoms like anxiety and depression. Both conditions strongly worsen IBD disease burden. In the present review, we summarize the current understanding of the pathogenesis of depression and anxiety in IBD. We present a stepwise cascade along a gut-immune-brain axis initiated by evasion of chronic intestinal inflammation to pass the epithelial and vascular barrier in the gut and cause systemic inflammation. We then summarize different anatomical transmission routes of gut-derived peripheral inflammation into the central nervous system (CNS) and highlight the current knowledge on neuroinflammatory changes in the CNS of preclinical IBD mouse models with a focus on microglia, the brain-resident macrophages. Subsequently, we discuss how neuroinflammation in IBD can alter neuronal circuitry to trigger symptoms like depression and anxiety. Finally, the role of intestinal microbiota in the gut-immune-brain axis in IBD will be reviewed. A more comprehensive understanding of the interaction between the gastrointestinal tract, the immune system and the CNS accounting for the similarities and differences between UC and CD will pave the path for improved prediction and treatment of neuropsychiatric comorbidities in IBD and other inflammatory diseases.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Animals , Brain/pathology , Colitis, Ulcerative/pathology , Crohn Disease/pathology , Inflammation , Inflammatory Bowel Diseases/pathology , Mice , Morbidity
8.
J Parkinsons Dis ; 11(4): 2035-2045, 2021.
Article in English | MEDLINE | ID: mdl-34366379

ABSTRACT

BACKGROUND: There is growing interest in non-motor symptoms in Parkinson's disease (PD), due to the impact on quality of life. Anhedonia, the inability to experience joy and lust, has a prevalence of up to 46% in PD. The perception of pleasantness of an odor is reduced in anhedonia without PD. We previously showed a reduced hedonic olfactory perception in PD, i.e., patients evaluated odors as less pleasant or unpleasant compared to controls. This deficit correlated with anhedonia. OBJECTIVE: We aimed to confirm these findings. Moreover, we hypothesized that the perception of pleasantness in PD is affected on a multisensory level and correlates with anhedonia. Therefore, we assessed olfactory, visual and acoustic evaluation of pleasantness in PD and healthy individuals. METHODS: Participants had to rate the pleasantness of 22 odors, pictures, and sounds on a nine-point Likert scale. Depression, anhedonia, and apathy were assessed by means of questionnaires. Results of the pleasantness-rating were compared between groups and correlated to scores of the questionnaires. RESULTS: In particular pleasant and unpleasant stimuli across all three modalities are perceived less intense in PD, suggesting that a reduced range of perception of pleasantness is a multisensory phenomenon. However, only a reduction of visual hedonic perception correlated with anhedonia in PD. A correlation of reduced perception of pleasantness with apathy or depression was not present. CONCLUSION: We provide evidence for a multisensory deficit in the perception of pleasantness. Further studies should delineate the underlying neural circuity and the diagnostic value to detect neuropsychiatric symptoms in PD.


Subject(s)
Anhedonia , Olfactory Perception , Parkinson Disease , Humans , Parkinson Disease/complications , Quality of Life , Smell
9.
Diagnostics (Basel) ; 11(7)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206599

ABSTRACT

Immunological explanatory approaches are becoming increasingly important in schizophrenia research. In this context, the function of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) plays an essential role. Different adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), are key elements in sustaining the integrity of the BBB and BCSFB. The objectives of this study were to (1) compare the levels of different cell adhesion molecules in the CSF of patients with schizophrenia spectrum disorders to those of patients with unipolar depression and (2) analyze their association with the established markers of the BBB/BCSFB function (CSF total protein and albumin quotient (AQ)). Therefore, a total of 40 patients with schizophrenia spectrum disorder and 39 age- and sex-matched control patients with unipolar depression were analyzed. The levels of soluble ICAM-1 (s-ICAM-1), soluble VCAM-1 (s-VCAM-1), and plasminogen activator inhibitor 1 (PAI-1) in the CSF were measured using a magnetic bead multiplexing immunoassay. The levels of sICAM-1 (p < 0.001), sVCAM-1 (p < 0.001), and PAI-1 (p < 0.001) in the CSF were significantly higher in patients with schizophrenia spectrum disorder than in patients with unipolar depression. In addition, a significant correlation of sVCAM-1 levels with total protein concentrations (r = 0.454, p = 0.003) and AQ levels (r = 0.512, p = 0.001) in patients with schizophrenia spectrum disorders was observed. The results revealed that sICAM-1 and sVCAM-1 levels in the CSF were higher in patients with schizophrenia spectrum disorder than in those with depression. These circulating signaling molecules may indicate endothelial dysfunction causing impaired BBB/BCSFB function in patients with schizophrenia spectrum disorders. Consistent with this view, a highly significant correlation of sVCAM-1 with CSF protein and AQs was detected. Upregulation of these cell adhesion molecules might be indicative of a proinflammatory immune response underlying the BBB/BCSFB disturbance in a subgroup of patients with schizophrenia spectrum disorders. The significance of the study is limited by its retrospective research design and by the absence of a healthy control group. The assay used was not previously established for the measurement of CSF. Further translational and controlled studies of the role of different cell adhesion molecules in schizophrenia are needed.

10.
J Cereb Blood Flow Metab ; 41(11): 3097-3110, 2021 11.
Article in English | MEDLINE | ID: mdl-34159825

ABSTRACT

Selective therapeutic hypothermia (TH) showed promising preclinical results as a neuroprotective strategy in acute ischemic stroke. We aimed to assess safety and feasibility of an intracarotid cooling catheter conceived for fast and selective brain cooling during endovascular thrombectomy in an ovine stroke model.Transient middle cerebral artery occlusion (MCAO, 3 h) was performed in 20 sheep. In the hypothermia group (n = 10), selective TH was initiated 20 minutes before recanalization, and was maintained for another 3 h. In the normothermia control group (n = 10), a standard 8 French catheter was used instead. Primary endpoints were intranasal cooling performance (feasibility) plus vessel patency assessed by digital subtraction angiography and carotid artery wall integrity (histopathology, both safety). Secondary endpoints were neurological outcome and infarct volumes.Computed tomography perfusion demonstrated MCA territory hypoperfusion during MCAO in both groups. Intranasal temperature decreased by 1.1 °C/3.1 °C after 10/60 minutes in the TH group and 0.3 °C/0.4 °C in the normothermia group (p < 0.001). Carotid artery and branching vessel patency as well as carotid wall integrity was indifferent between groups. Infarct volumes (p = 0.74) and neurological outcome (p = 0.82) were similar in both groups.Selective TH was feasible and safe. However, a larger number of subjects might be required to demonstrate efficacy.


Subject(s)
Cold Temperature/adverse effects , Hypothermia, Induced/adverse effects , Infarction, Middle Cerebral Artery/therapy , Ischemic Stroke/therapy , Angiography, Digital Subtraction/methods , Animals , Carotid Artery, Common/diagnostic imaging , Carotid Artery, Common/pathology , Carotid Artery, Common/surgery , Catheterization/methods , Disease Models, Animal , Endovascular Procedures/methods , Feasibility Studies , Hypothermia, Induced/instrumentation , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Ischemic Stroke/veterinary , Neuroprotective Agents/pharmacology , Outcome Assessment, Health Care , Perfusion Imaging/methods , Safety , Sheep , Thrombectomy/methods
11.
Neural Regen Res ; 16(9): 1711-1714, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33510059

ABSTRACT

The contribution of chronic peripheral inflammation to the pathogenesis of neurodegenerative diseases is an outstanding question. Sustained activation of the peripheral innate and adaptive immune systems occurs in the context of a broad array of disorders ranging from chronic infectious diseases to autoimmune and metabolic diseases. In addition, progressive systemic inflammation is increasingly recognized during aging. Peripheral immune cells could potentially modulate the cellular brain environment via the secretion of soluble molecules. There is an ongoing debate whether peripheral immune cells have the potential to migrate into the brain under certain permissive circumstances. In this perspective, we discuss the possible contribution of chronic peripheral inflammation to the pathogenesis of age-related neurodegenerative diseases with a focus on microglia, the resident immune cells of the brain parenchyma.

12.
Front Immunol ; 11: 612104, 2020.
Article in English | MEDLINE | ID: mdl-33362800

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by erosive polyarthritis. Beyond joint pathology, RA is associated with neuropsychiatric comorbidity including depression, anxiety, and an increased risk to develop neurodegenerative diseases in later life. Studies investigating the central nervous system (CNS) in preclinical models of RA have leveraged the understanding of the intimate crosstalk between peripheral and central immune responses. This mini review summarizes the current knowledge of CNS comorbidity in RA patients and known underlying cellular mechanisms. We focus on the differential regulation of CNS myeloid and glial cells in different mouse models of RA reflecting different patterns of peripheral immune activation. Moreover, we address CNS responses to anti-inflammatory treatment in human RA patients and mice. Finally, to illustrate the bidirectional communication between the CNS and chronic peripheral inflammation, we present the current knowledge about the impact of the CNS on arthritis. A comprehensive understanding of the crosstalk between the CNS and chronic peripheral inflammation will help to identify RA patients at risk of developing CNS comorbidity, setting the path for future therapeutic approaches in both RA and neuropsychiatric diseases.


Subject(s)
Arthritis, Rheumatoid/physiopathology , Brain/physiopathology , Joints/innervation , Neural Pathways/physiopathology , Neuroimmunomodulation , Animals , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Brain/immunology , Brain/metabolism , Humans , Inflammation Mediators/metabolism , Joints/immunology , Joints/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neural Pathways/immunology , Neural Pathways/metabolism , Neuroglia/immunology , Neuroglia/metabolism
13.
Int J Mol Sci ; 21(22)2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33203140

ABSTRACT

Complex neuropsychiatric-cardiac syndromes can be genetically determined. For the first time, the authors present a syndromal form of short QT syndrome in a 34-year-old German male patient with extracardiac features with predominant psychiatric manifestation, namely a severe form of secondary high-functioning autism spectrum disorder (ASD), along with affective and psychotic exacerbations, and severe dental enamel defects (with rapid wearing off his teeth) due to a heterozygous loss-of-function mutation in the CACNA1C gene (NM_000719.6: c.2399A > C; p.Lys800Thr). This mutation was found only once in control databases; the mutated lysine is located in the Cav1.2 calcium channel, is highly conserved during evolution, and is predicted to affect protein function by most pathogenicity prediction algorithms. L-type Cav1.2 calcium channels are widely expressed in the brain and heart. In the case presented, electrophysiological studies revealed a prominent reduction in the current amplitude without changes in the gating behavior of the Cav1.2 channel, most likely due to a trafficking defect. Due to the demonstrated loss of function, the p.Lys800Thr variant was finally classified as pathogenic (ACMG class 4 variant) and is likely to cause a newly described Cav1.2 channelopathy.


Subject(s)
Arrhythmias, Cardiac , Autistic Disorder , Calcium Channels, L-Type , Channelopathies , Dental Enamel , Loss of Function Mutation , Mood Disorders , Adult , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Autistic Disorder/genetics , Autistic Disorder/metabolism , Autistic Disorder/pathology , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Channelopathies/genetics , Channelopathies/metabolism , Channelopathies/pathology , Dental Enamel/abnormalities , Dental Enamel/metabolism , Dental Enamel/pathology , Humans , Male , Mood Disorders/genetics , Mood Disorders/metabolism , Mood Disorders/pathology
14.
Compr Psychiatry ; 102: 152196, 2020 10.
Article in English | MEDLINE | ID: mdl-32927367

ABSTRACT

INTRODUCTION: Unipolar depression is a common and debilitating disorder. Immunological explanatory approaches have become increasingly important in recent years and can be studied particularly well in the cerebrospinal fluid (CSF). Previous studies discerned alterations in interleukin (IL)-6 and IL-8 levels; however, findings regarding IL-8 were partly contradictory. The aim of the present study was to investigate the concentrations of different cytokines and chemokines, focusing on IL-8, in the CSF of patients with unipolar depression. MATERIALS AND METHODS: Participants included 40 patients with unipolar depression and 39 mentally healthy controls with idiopathic intracranial hypertension. CSF cytokine levels were measured using a magnetic bead multiplexing immunoassay. RESULTS: IL-8 levels in the CSF of the patient group with depression were significantly higher than those in the control group (Mean ± SD: 38.44 ± 6.26 pg/ml versus 21.40 ± 7.96 pg/ml; p < .001). LIMITATIONS: The significance of the results is limited by the retrospective design and methodological aspects. DISCUSSION: The main findings of this study were significantly higher concentrations of IL-8 in the CSF of patients with unipolar depression than in the control group. The detection of high CSF IL-8 levels in this study supports the idea that inflammatory processes might play a role in the pathophysiology of a subgroup of patients with depression.


Subject(s)
Depressive Disorder , Interleukin-8 , Chemokines , Cytokines , Depressive Disorder/diagnosis , Humans , Retrospective Studies
15.
Front Psychiatry ; 11: 745, 2020.
Article in English | MEDLINE | ID: mdl-32922313

ABSTRACT

BACKGROUND: In a subgroup of patients with mood disorders, clear-cut organic disorders are responsible for depressive symptoms (e.g., autoimmune diseases such as multiple sclerosis or systemic lupus erythematosus). In these cases, an organic affective disorder can be diagnosed. CASE PRESENTATION: The authors present the case of a 59-year-old male patient who developed a severe depressive episode over approximately 6 months and was, therefore, admitted to the hospital. In retrospect, he reported that, at age 39, he suffered from self-limiting sensory disturbances and muscle weakness in both legs. The current magnetic resonance imaging of his brain showed several conspicuous FLAIR-hyperintense supratentorial white matter lesions compatible with chronic inflammatory brain disease. Imaging of the spinal axis revealed no clear spinal lesions. Cerebrospinal fluid (CSF) analyses showed CSF-specific oligoclonal bands. Therefore, multiple sclerosis was diagnosed. Further CSF analyses, using tissue-based assays with indirect immunofluorescence on unfixed murine brain tissue, revealed a (peri-)nuclear signal and a strong neuritic signal of many neurons, especially on granule cells in the cerebellum, hippocampus, and olfactory bulb, as well as in the corpus callosum. Additionally, antinuclear antibody (ANA) titers of 1:12,800 and a lymphopenia were detected in blood tests. Further system clarification showed no suspicion of rheumatic or oncological disease. Anti-inflammatory treatment led to rapid and sustained improvement. CONCLUSION: The present patient suffered from a probable "autoimmune depression" in the context of newly diagnosed multiple sclerosis with typical MRI and CSF pathologies, alongside mild concomitant latent systemic autoimmune process (with high-titer ANAs and lymphopenia) and unknown antineuronal antibodies. The case report illustrates that a depressive syndrome suggestive of primary idiopathic depressive disorder may be associated with an autoimmune brain involvement. The detection of such organic affective disorders is of high clinical relevance for affected patients, as it enables alternative and more causal treatment approaches.

16.
Front Psychiatry ; 11: 627, 2020.
Article in English | MEDLINE | ID: mdl-32848899

ABSTRACT

BACKGROUND: Autoimmune encephalitis, such as anti-NMDA-receptor encephalitis, typically presenting with subacute onset of neuropsychiatric symptoms, can be detected by antineuronal autoantibodies or inflammatory changes in the cerebrospinal fluid (CSF), as well as pathological alterations in electroencephalography (EEG), magnetic resonance imaging (MRI), or [18F]fluorodeoxyglucose positron emission tomography (FDG PET). For patients with predominant psychotic symptoms, the term autoimmune psychosis was proposed. Here, the authors present the case of a patient with probable autoimmune psychosis associated with unknown antineuronal antibodies. CASE PRESENTATION: A 18-year-old male patient with preexisting autism spectrum disorder developed a severe catatonic syndrome over 2.5 years. The MRI showed normal findings, the EEG depicted intermittent slowing, and the independent component analyses showed additional sharp spikes. However, FDG PET, the basic laboratory analysis and testing of the serum/CSF for well-characterized antineuronal autoantibodies were unsuspicious. The serum and CSF "tissue-based assay" using indirect immunofluorescence on unfixed murine brain tissue revealed antineuronal autoantibodies against an unknown epitope in granule cells in the cerebellum and to neurites of hippocampal interneurons with a somatodendritic staining pattern. The immunosuppressive treatment with high-dose glucocorticoids, plasma exchange, and rituximab led to partial improvement. CONCLUSION: The patient probably suffered from autoantibody-associated autoimmune psychosis. The special features of the case were that the patient (1) presented with mostly inconspicuous basic diagnostics, except for the altered EEG in combination with the detection of CSF autoantibodies directed against a currently unknown epitope, (2) experienced an isolated and long-lasting psychotic course, and (3) had pre-existing autism spectrum disorder. The detection of a probable autoimmune pathophysiology in such cases seems important, as it offers new and more causal immunosuppressive treatment alternatives.

18.
Cell Rep ; 30(12): 4082-4095.e6, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32209470

ABSTRACT

Systemic immune dysregulation contributes to the development of neuropsychiatric and neurodegenerative diseases. The precise effect of chronic peripheral immune stimulation on myeloid cells across anatomical brain regions is unclear. Here, we demonstrate brain-region-specific differences in myeloid responses induced by chronic peripheral inflammation. This shift in the myeloid compartment is associated with the appearance of an inflammatory myeloid subpopulation in the cortex, striatum, and thalamus accompanied by regional transcriptomic fingerprints that include induction of chemokines, complement factors, and endothelial adhesion molecules. In contrast, myeloid immune responses within the hippocampus and cerebellum are subtle or absent. Treatment with the anti-tumor necrosis factor α (anti-TNF-α) antibody infliximab ablates the region-specific inflammatory response. A region-specific myeloid cell response to chronic peripheral inflammation is observed in postmortem brains from individuals with rheumatoid arthritis. Our data suggest that chronic peripheral inflammation has heterogeneous effects on the brain, as evidenced by the spectrum of myeloid cell responses observed across brain regions.


Subject(s)
Central Nervous System/pathology , Inflammation/pathology , Myeloid Cells/pathology , Animals , Arthritis, Rheumatoid/pathology , Blood-Brain Barrier/pathology , Chronic Disease , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Expression Regulation , Homeostasis , Humans , Inflammation/genetics , Mice, Inbred C57BL , Mice, Transgenic , Microglia/pathology , Organ Specificity , Single-Cell Analysis , Transcription, Genetic , Tumor Necrosis Factor-alpha/metabolism
19.
Curr Alzheimer Res ; 17(1): 29-43, 2020.
Article in English | MEDLINE | ID: mdl-32048973

ABSTRACT

Alzheimer's Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-ß (Aß) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aß plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Microglia/pathology , Plaque, Amyloid/pathology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Humans , Microglia/metabolism , Plaque, Amyloid/metabolism , Transcriptome
20.
Front Neurol ; 10: 1086, 2019.
Article in English | MEDLINE | ID: mdl-31749755

ABSTRACT

Background: Anti-N-methyl D-aspartate (NMDA) receptor encephalitis is an autoimmune condition characterized by neuropsychiatric symptoms, including epileptic seizures, movement disorders, autonomic instability, disturbances of consciousness, paranoia, delusions, and catatonia. Ovarian teratomas and viral infections, typically Herpes simplex viruses, have previously been demonstrated to precipitate anti-NMDA receptor encephalitis, but in many cases, the trigger remains unclear. The detection of anti-NMDA receptor antibodies in cerebrospinal fluid (CSF), in combination with other CSF, electroencephalography (EEG), or magnetic resonance imaging (MRI) abnormalities, typically leads to diagnostic clarification. Case Presentation: We present the case of a 22-year-old female patient who developed an acute polymorphic psychotic episode 3 days after receiving a booster vaccination against tetanus, diphtheria, pertussis, and polio (Tdap-IPV). Her psychiatric symptoms were initially diagnosed as a primary psychiatric disorder. Her MRI, EEG, and CSF results were non-specific. Anti-NMDA receptor IgG antibodies against the GluN1 subunit were detected in her serum (with a maximum titer of 1:320), but not in her CSF. [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) showed pronounced relative hypermetabolism of her association cortices and a relative hypometabolism of the primary cortices, on the basis of which an anti-NMDA receptor encephalitis diagnosis was made, and treatment with a steroid pulse was initiated. The treatment led to fast and convincing clinical improvement with normalization of neuropsychological findings, considerable improvement of FDG-PET findings, and decreasing antibody titers. Conclusion: The patient's psychiatric symptoms were most likely caused by anti-NMDA receptor encephalitis. Her polymorphic psychotic symptoms first occurred after she had received a Tdap-IPV booster vaccination. Although the vaccination cannot have caused the initial antibody formation since IgG serum antibodies were detected only 3 days after administration of the vaccine, the vaccine may have exerted immunomodulatory effects. MRI, EEG, and CSF findings were non-specific; however, FDG-PET identified brain involvement consistent with anti-NMDA receptor encephalitis. This case shows the importance of implementing a multimodal diagnostic work-up in similar situations. The negative CSF antibody finding furthermore fits to the hypothesis that the brain may act as an immunoprecipitator for anti-NMDA receptor antibodies.

SELECTION OF CITATIONS
SEARCH DETAIL
...