Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Metab ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122784

ABSTRACT

The clearance of apoptotic cells, termed efferocytosis, is essential for tissue homeostasis and prevention of autoimmunity1. Although past studies have elucidated local molecular signals that regulate homeostatic efferocytosis in a tissue2,3, whether signals arising distally also regulate homeostatic efferocytosis remains elusive. Here, we show that large peritoneal macrophage (LPM) display impairs efferocytosis in broad-spectrum antibiotics (ABX)-treated, vancomycin-treated and germ-free mice in vivo, all of which have a depleted gut microbiota. Mechanistically, the microbiota-derived short-chain fatty acid butyrate directly boosts efferocytosis efficiency and capacity in mouse and human macrophages, and rescues ABX-induced LPM efferocytosis defects in vivo. Bulk messenger RNA sequencing of butyrate-treated macrophages in vitro and single-cell messenger RNA sequencing of LPMs isolated from ABX-treated and butyrate-rescued mice reveals regulation of efferocytosis-supportive transcriptional programmes. Specifically, we find that the efferocytosis receptor T cell immunoglobulin and mucin domain containing 4 (TIM-4, Timd4) is downregulated in LPMs of ABX-treated mice but rescued by oral butyrate. We show that TIM-4 is required for the butyrate-induced enhancement of LPM efferocytosis capacity and that LPM efferocytosis is impaired beyond withdrawal of ABX. ABX-treated mice exhibit significantly worse disease in a mouse model of lupus. Our results demonstrate that homeostatic efferocytosis relies on distal metabolic signals and suggest that defective homeostatic efferocytosis may explain the link between ABX use and inflammatory disease4-7.

2.
Immunity ; 57(1): 3-5, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38198853

ABSTRACT

Tissue-resident macrophages are essential for maintaining organismal homeostasis, but the precise mechanisms that macrophages use to perform this function are not fully understood. In this issue of Immunity, He et al. demonstrate that renal macrophages surveil and sample urine particles, ensuring optimal collecting duct flow and preventing kidney stone development.


Subject(s)
Kidney , Rivers , Macrophages , Homeostasis
3.
bioRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645894

ABSTRACT

Despite the success of fructose as a low-cost food additive, recent epidemiological evidence suggests that high fructose consumption by pregnant mothers or during adolescence is associated with disrupted neurodevelopment 1-7 . An essential step in appropriate mammalian neurodevelopment is the synaptic pruning and elimination of newly-formed neurons by microglia, the central nervous system's (CNS) resident professional phagocyte 8-10 . Whether early life high fructose consumption affects microglia function and if this directly impacts neurodevelopment remains unknown. Here, we show that both offspring born to dams fed a high fructose diet and neonates exposed to high fructose exhibit decreased microglial density, increased uncleared apoptotic cells, and decreased synaptic pruning in vivo . Importantly, deletion of the high affinity fructose transporter SLC2A5 (GLUT5) in neonates completely reversed microglia dysfunction, suggesting that high fructose directly affects neonatal development. Mechanistically, we found that high fructose treatment of both mouse and human microglia suppresses synaptic pruning and phagocytosis capacity which is fully reversed in GLUT5-deficient microglia. Using a combination of in vivo and in vitro nuclear magnetic resonance- and mass spectrometry-based fructose tracing, we found that high fructose drives significant GLUT5-dependent fructose uptake and catabolism, rewiring microglia metabolism towards a hypo-phagocytic state. Importantly, mice exposed to high fructose as neonates exhibited cognitive defects and developed anxiety-like behavior which were rescued in GLUT5-deficient animals. Our findings provide a mechanistic explanation for the epidemiological observation that early life high fructose exposure is associated with increased prevalence of adolescent anxiety disorders.

4.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37383948

ABSTRACT

The appropriate development of macrophages, the body's professional phagocyte, is essential for organismal development, especially in mammals. This dependence is exemplified by the observation that loss-of-function mutations in colony stimulating factor 1 receptor (CSF1R) results in multiple tissue abnormalities owing to an absence of macrophages. Despite this importance, little is known about the molecular and cell biological regulation of macrophage development. Here, we report the surprising finding that the chloride-sensing kinase With-no-lysine 1 (WNK1) is required for development of tissue-resident macrophages (TRMs). Myeloid-specific deletion of Wnk1 resulted in a dramatic loss of TRMs, disrupted organ development, systemic neutrophilia, and mortality between 3 and 4 weeks of age. Strikingly, we found that myeloid progenitors or precursors lacking WNK1 not only failed to differentiate into macrophages, but instead differentiated into neutrophils. Mechanistically, the cognate CSF1R cytokine macrophage-colony stimulating factor (M-CSF) stimulates macropinocytosis by both mouse and human myeloid progenitors and precursor cells. Macropinocytosis, in turn, induces chloride flux and WNK1 phosphorylation. Importantly, blocking macropinocytosis, perturbing chloride flux during macropinocytosis, and inhibiting WNK1 chloride-sensing activity each skewed myeloid progenitor differentiation from macrophages into neutrophils. Thus, we have elucidated a role for WNK1 during macropinocytosis and discovered a novel function of macropinocytosis in myeloid progenitors and precursor cells to ensure macrophage lineage fidelity. Highlights: Myeloid-specific WNK1 loss causes failed macrophage development and premature deathM-CSF-stimulated myeloid progenitors and precursors become neutrophils instead of macrophagesM-CSF induces macropinocytosis by myeloid progenitors, which depends on WNK1Macropinocytosis enforces macrophage lineage commitment.

5.
Front Immunol ; 12: 665782, 2021.
Article in English | MEDLINE | ID: mdl-34025667

ABSTRACT

Tissue-resident macrophages exist in unique environments, or niches, that inform their identity and function. There is an emerging body of literature suggesting that the qualities of this environment, such as the types of cells and debris they eat, the intercellular interactions they form, and the length of time spent in residence, collectively what we call habitare, directly inform their metabolic state. In turn, a tissue-resident macrophage's metabolic state can inform their function, including whether they resolve inflammation and protect the host from excessive perturbations of homeostasis. In this review, we summarize recent work that seeks to understand the metabolic requirements for tissue-resident macrophage identity and maintenance, for how they respond to inflammatory challenges, and for how they perform homeostatic functions or resolve inflammatory insults. We end with a discussion of the emerging technologies that are enabling, or will enable, in situ study of tissue-resident macrophage metabolism.


Subject(s)
Host-Pathogen Interactions/immunology , Macrophages/immunology , Macrophages/metabolism , Metabolism/immunology , Animals , Biotechnology , Homeostasis , Humans , Immunity/immunology , Inflammation/immunology , Inflammation/metabolism , Molecular Imaging
6.
Nat Microbiol ; 6(3): 401-412, 2021 03.
Article in English | MEDLINE | ID: mdl-33432150

ABSTRACT

Inflammasomes are signalling platforms that are assembled in response to infection or sterile inflammation by cytosolic pattern recognition receptors. The consequent inflammasome-triggered caspase-1 activation is critical for the host defence against pathogens. During infection, NLRP3, which is a pattern recognition receptor that is also known as cryopyrin, triggers the assembly of the inflammasome-activating caspase-1 through the recruitment of ASC and Nek7. The activation of the NLRP3 inflammasome is tightly controlled both transcriptionally and post-translationally. Despite the importance of the NLRP3 inflammasome regulation in autoinflammatory and infectious diseases, little is known about the mechanism controlling the activation of NLRP3 and the upstream signalling that regulates the NLRP3 inflammasome assembly. We have previously shown that the Rho-GTPase-activating toxin from Escherichia coli cytotoxic necrotizing factor-1 (CNF1) activates caspase-1, but the upstream mechanism is unclear. Here, we provide evidence of the role of the NLRP3 inflammasome in sensing the activity of bacterial toxins and virulence factors that activate host Rho GTPases. We demonstrate that this activation relies on the monitoring of the toxin's activity on the Rho GTPase Rac2. We also show that the NLRP3 inflammasome is activated by a signalling cascade that involves the p21-activated kinases 1 and 2 (Pak1/2) and the Pak1-mediated phosphorylation of Thr 659 of NLRP3, which is necessary for the NLRP3-Nek7 interaction, inflammasome activation and IL-1ß cytokine maturation. Furthermore, inhibition of the Pak-NLRP3 axis decreases the bacterial clearance of CNF1-expressing UTI89 E. coli during bacteraemia in mice. Taken together, our results establish that Pak1 and Pak2 are critical regulators of the NLRP3 inflammasome and reveal the role of the Pak-NLRP3 signalling axis in vivo during bacteraemia in mice.


Subject(s)
Bacteremia/metabolism , Bacterial Toxins/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , rac GTP-Binding Proteins/metabolism , Animals , Bacteremia/immunology , Bacteremia/microbiology , Bacterial Load , Bacterial Toxins/genetics , Escherichia coli/genetics , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Immunity, Innate , Mice , Phosphorylation , Signal Transduction , p21-Activated Kinases/metabolism , rac GTP-Binding Proteins/genetics , RAC2 GTP-Binding Protein
7.
Cancer Immunol Res ; 9(3): 309-323, 2021 03.
Article in English | MEDLINE | ID: mdl-33361087

ABSTRACT

IL1ß is a central mediator of inflammation. Secretion of IL1ß typically requires proteolytic maturation by the inflammasome and formation of membrane pores by gasdermin D (GSDMD). Emerging evidence suggests an important role for IL1ß in promoting cancer progression in patients, but the underlying mechanisms are ill-defined. Here, we have shown a key role for IL1ß in driving tumor progression in two distinct mouse tumor models. Notably, activation of the inflammasome, caspase-8, as well as the pore-forming proteins GSDMD and mixed lineage kinase domain-like protein in the host were dispensable for the release of intratumoral bioactive IL1ß. Inflammasome-independent IL1ß release promoted systemic neutrophil expansion and fostered accumulation of T-cell-suppressive neutrophils in the tumor. Moreover, IL1ß was essential for neutrophil infiltration triggered by antiangiogenic therapy, thereby contributing to treatment-induced immunosuppression. Deletion of IL1ß allowed intratumoral accumulation of CD8+ effector T cells that subsequently activated tumor-associated macrophages. Depletion of either CD8+ T cells or macrophages abolished tumor growth inhibition in IL1ß-deficient mice, demonstrating a crucial role for CD8+ T-cell-macrophage cross-talk in the antitumor immune response. Overall, these results support a tumor-promoting role for IL1ß through establishing an immunosuppressive microenvironment and show that inflammasome activation is not essential for release of this cytokine in tumors.


Subject(s)
Interleukin-1beta/metabolism , Neoplasms/immunology , Neutrophils/immunology , Tumor Escape , Tumor Microenvironment/immunology , Animals , Cell Communication/immunology , Disease Models, Animal , Female , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Interleukin-1beta/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Knockout , Neoplasms/pathology , Neutrophils/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , T-Lymphocytes, Cytotoxic/immunology , Tumor-Associated Macrophages/immunology
8.
Mediators Inflamm ; 2020: 3412763, 2020.
Article in English | MEDLINE | ID: mdl-33380899

ABSTRACT

Cryptococcus neoformans is an encapsulated yeast that causes disease mainly in immunosuppressed hosts. It is considered a facultative intracellular pathogen because of its capacity to survive and replicate inside phagocytes, especially macrophages. This ability is heavily dependent on various virulence factors, particularly the glucuronoxylomannan (GXM) component of the polysaccharide capsule. Inflammasome activation in phagocytes is usually protective against fungal infections, including cryptococcosis. Nevertheless, recognition of C. neoformans by inflammasome receptors requires specific changes in morphology or the opsonization of the yeast, impairing proper inflammasome function. In this context, we analyzed the impact of molecules secreted by C. neoformans B3501 strain and its acapsular mutant Δcap67 in inflammasome activation in an in vitro model. Our results showed that conditioned media derived from B3501 was capable of inhibiting inflammasome-dependent events (i.e., IL-1ß secretion and LDH release via pyroptosis) more strongly than conditioned media from Δcap67, regardless of GXM presence. We also demonstrated that macrophages treated with conditioned media were less responsive against infection with the virulent strain H99, exhibiting lower rates of phagocytosis, increased fungal burdens, and enhanced vomocytosis. Moreover, we showed that the aromatic metabolite DL-Indole-3-lactic acid (ILA) and DL-p-Hydroxyphenyllactic acid (HPLA) were present in B3501's conditioned media and that ILA alone or with HPLA is involved in the regulation of inflammasome activation by C. neoformans. These results were confirmed by in vivo experiments, where exposure to conditioned media led to higher fungal burdens in Acanthamoeba castellanii culture as well as in higher fungal loads in the lungs of infected mice. Overall, the results presented show that conditioned media from a wild-type strain can inhibit a vital recognition pathway and subsequent fungicidal functions of macrophages, contributing to fungal survival in vitro and in vivo and suggesting that secretion of aromatic metabolites, such as ILA, during cryptococcal infections fundamentally impacts pathogenesis.


Subject(s)
Cryptococcus neoformans/metabolism , Inflammasomes/metabolism , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Polysaccharides/chemistry , Animals , Caspase 1/metabolism , Cryptococcosis , Culture Media, Conditioned , Dendritic Cells/metabolism , Fluorescent Antibody Technique , Lactic Acid/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Phagocytosis , Polysaccharides/metabolism , Virulence Factors/metabolism
10.
PLoS Biol ; 17(9): e3000354, 2019 09.
Article in English | MEDLINE | ID: mdl-31525186

ABSTRACT

The nucleotide-binding-domain (NBD)-and leucine-rich repeat (LRR)-containing (NLR) family, pyrin-domain-containing 3 (NLRP3) inflammasome drives pathological inflammation in a suite of autoimmune, metabolic, malignant, and neurodegenerative diseases. Additionally, NLRP3 gain-of-function point mutations cause systemic periodic fever syndromes that are collectively known as cryopyrin-associated periodic syndrome (CAPS). There is significant interest in the discovery and development of diarylsulfonylurea Cytokine Release Inhibitory Drugs (CRIDs) such as MCC950/CRID3, a potent and selective inhibitor of the NLRP3 inflammasome pathway, for the treatment of CAPS and other diseases. However, drug discovery efforts have been constrained by the lack of insight into the molecular target and mechanism by which these CRIDs inhibit the NLRP3 inflammasome pathway. Here, we show that the NAIP, CIITA, HET-E, and TP1 (NACHT) domain of NLRP3 is the molecular target of diarylsulfonylurea inhibitors. Interestingly, we find photoaffinity labeling (PAL) of the NACHT domain requires an intact (d)ATP-binding pocket and is substantially reduced for most CAPS-associated NLRP3 mutants. In concordance with this finding, MCC950/CRID3 failed to inhibit NLRP3-driven inflammatory pathology in two mouse models of CAPS. Moreover, it abolished circulating levels of interleukin (IL)-1ß and IL-18 in lipopolysaccharide (LPS)-challenged wild-type mice but not in Nlrp3L351P knock-in mice and ex vivo-stimulated mutant macrophages. These results identify wild-type NLRP3 as the molecular target of MCC950/CRID3 and show that CAPS-related NLRP3 mutants escape efficient MCC950/CRID3 inhibition. Collectively, this work suggests that MCC950/CRID3-based therapies may effectively treat inflammation driven by wild-type NLRP3 but not CAPS-associated mutants.


Subject(s)
Cryopyrin-Associated Periodic Syndromes/genetics , Furans/pharmacology , Inflammasomes/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Cytokines/antagonists & inhibitors , Disease Models, Animal , Drug Evaluation, Preclinical , HEK293 Cells , Heterocyclic Compounds, 4 or More Rings , Humans , Indenes , Lipopolysaccharides , Macrophages/drug effects , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Protein Domains , Sulfones
11.
Colloids Surf B Biointerfaces ; 174: 409-415, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30481701

ABSTRACT

OBJECTIVES: In this study, polymeric nanoparticles based on chitosan incorporating the antifungal miconazole nitrate were fabricated and testedin vivo using murine vulvovaginal candidiasis. METHODS: Nanoparticles prepared by the ionotropic gelation method presented 200 to 300 nm diameter and polydispersity indexes ranging from 0.2 to 0.4. The nanoparticles were prepared to incorporate 63.9 mg/mL of miconazole nitrate to be testedin vivo. Murine vulvovaginal candidiasis was standardized using estradiol valerate before the animals were challenged by Candida albicans. RESULTS: The treatment using chitosan nanoparticles within miconazole nitrate presented the same therapeutic efficacy as miconazole nitrate in a commercial cream formulation, however using the antifungal content about seven-fold lower. This increase in the miconazole nitrate's therapeutic efficacy is may be due to the down-regulation of interleukin 10 (IL-10) expression. CONCLUSIONS: Our data represent a proof of concept that can be exploited to achieve an alternative and promising therapy for the treatment of vulvovaginal candidiasis.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Candidiasis, Vulvovaginal/drug therapy , Chitosan/chemistry , Miconazole/pharmacology , Nanoparticles/administration & dosage , Administration, Intravaginal , Animals , Antifungal Agents/chemistry , Candidiasis, Vulvovaginal/microbiology , Female , Humans , Mice , Mice, Inbred BALB C , Miconazole/chemistry , Nanoparticles/chemistry
12.
Nat Commun ; 9(1): 4846, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30451870

ABSTRACT

Clostridium difficile is the leading cause of pseudomembranous colitis in hospitalized patients. C. difficile enterotoxins TcdA and TcdB promote this inflammatory condition via a cytotoxic response on intestinal epithelial cells (IECs), but the underlying mechanisms are incompletely understood. Additionally, TcdA and TcdB engage the Pyrin inflammasome in macrophages, but whether Pyrin modulates CDI pathophysiology is unknown. Here we show that the Pyrin inflammasome is not functional in IECs and that Pyrin signaling is dispensable for CDI-associated IEC death and for in vivo pathogenesis. Instead, our studies establish that C. difficile enterotoxins induce activation of executioner caspases 3/7 via the intrinsic apoptosis pathway, and demonstrate that caspase-3/7-mediated IEC apoptosis is critical for in vivo host defense during early stages of CDI. In conclusion, our findings dismiss a critical role for inflammasomes in CDI pathogenesis, and identify IEC apoptosis as a host defense mechanism that restricts C. difficile infection in vivo.


Subject(s)
Apoptosis/immunology , Caspase 3/genetics , Caspase 7/genetics , Clostridioides difficile/immunology , Enterocolitis, Pseudomembranous/immunology , Epithelial Cells/immunology , Host-Pathogen Interactions/immunology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Toxins/genetics , Bacterial Toxins/immunology , Caspase 3/immunology , Caspase 7/immunology , Clostridioides difficile/growth & development , Cytotoxicity, Immunologic , Disease Models, Animal , Enterocolitis, Pseudomembranous/genetics , Enterocolitis, Pseudomembranous/microbiology , Enterotoxins/genetics , Enterotoxins/immunology , Epithelial Cells/microbiology , Gene Expression Regulation , Humans , Immunity, Innate , Inflammasomes/genetics , Inflammasomes/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Macrophages/immunology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Organoids/immunology , Organoids/microbiology , Pyrin/genetics , Pyrin/immunology , Signal Transduction
13.
J Exp Med ; 215(6): 1519-1529, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29793924

ABSTRACT

Pyroptosis is an inflammasome-induced lytic cell death mode, the physiological role of which in chronic inflammatory diseases is unknown. Familial Mediterranean Fever (FMF) is the most common monogenic autoinflammatory disease worldwide, affecting an estimated 150,000 patients. The disease is caused by missense mutations in Mefv that activate the Pyrin inflammasome, but the pathophysiologic mechanisms driving autoinflammation in FMF are incompletely understood. Here, we show that Clostridium difficile infection of FMF knock-in macrophages that express a chimeric FMF-associated MefvV726A Pyrin elicited pyroptosis and gasdermin D (GSDMD)-mediated interleukin (IL)-1ß secretion. Importantly, in vivo GSDMD deletion abolished spontaneous autoinflammatory disease. GSDMD-deficient FMF knock-in mice were fully protected from the runted growth, anemia, systemic inflammatory cytokine production, neutrophilia, and tissue damage that characterize this autoinflammatory disease model. Overall, this work identifies pyroptosis as a critical mechanism of IL-1ß-dependent autoinflammation in FMF and highlights GSDMD inhibition as a potential antiinflammatory strategy in inflammasome-driven diseases.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Familial Mediterranean Fever/metabolism , Familial Mediterranean Fever/pathology , Inflammation/metabolism , Inflammation/pathology , Animals , Clostridioides difficile/physiology , Cytokines/biosynthesis , Disease Models, Animal , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins , Macrophages/metabolism , Macrophages/microbiology , Mice , Neutrophils/pathology , Phosphate-Binding Proteins , Pyrin/metabolism , Pyrin/pharmacology , Pyroptosis , Spleen/pathology , Wasting Syndrome/pathology
14.
Cell Rep ; 21(12): 3427-3444, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29262324

ABSTRACT

The caspase activation and recruitment domain (CARD)-based inflammasome sensors NLRP1b and NLRC4 induce caspase-1-dependent pyroptosis independent of the inflammasome adaptor ASC. Here, we show that NLRP1b and NLRC4 trigger caspase-8-mediated apoptosis as an alternative cell death program in caspase-1-/- macrophages and intestinal epithelial organoids (IECs). The caspase-8 adaptor FADD was recruited to ASC specks, which served as cytosolic platforms for caspase-8 activation and NLRP1b/NLRC4-induced apoptosis. We further found that caspase-1 protease activity dominated over scaffolding functions in suppressing caspase-8 activation and induction of apoptosis of macrophages and IECs. Moreover, TLR-induced c-FLIP expression inhibited caspase-8-mediated apoptosis downstream of ASC speck assembly, but did not affect pyroptosis induction by NLRP1b and NLRC4. Moreover, unlike during pyroptosis, NLRP1b- and NLRC4-elicited apoptosis retained alarmins and the inflammasome-matured cytokines interleukin 1ß (IL-1ß) and IL-18 intracellularly. This work identifies critical mechanisms regulating apoptosis induction by the inflammasome sensors NLRP1b and NLRC4 and suggests converting pyroptosis into apoptosis as a paradigm for suppressing inflammation.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Calcium-Binding Proteins/metabolism , Caspase 1/metabolism , Inflammasomes/metabolism , Pyroptosis , Animals , Caspase 8/metabolism , Enterocytes/metabolism , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Toll-Like Receptors/metabolism
15.
Nature ; 546(7660): 606-608, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28636602
16.
Proc Natl Acad Sci U S A ; 113(50): 14384-14389, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911804

ABSTRACT

Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease worldwide. It is caused by mutations in the inflammasome adaptor Pyrin, but how FMF mutations alter signaling in FMF patients is unknown. Herein, we establish Clostridium difficile and its enterotoxin A (TcdA) as Pyrin-activating agents and show that wild-type and FMF Pyrin are differentially controlled by microtubules. Diverse microtubule assembly inhibitors prevented Pyrin-mediated caspase-1 activation and secretion of IL-1ß and IL-18 from mouse macrophages and human peripheral blood mononuclear cells (PBMCs). Remarkably, Pyrin inflammasome activation persisted upon microtubule disassembly in PBMCs of FMF patients but not in cells of patients afflicted with other autoinflammatory diseases. We further demonstrate that microtubules control Pyrin activation downstream of Pyrin dephosphorylation and that FMF mutations enable microtubule-independent assembly of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) micrometer-sized perinuclear structures (specks). The discovery that Pyrin mutations remove the obligatory requirement for microtubules in inflammasome activation provides a conceptual framework for understanding FMF and enables immunological screening of FMF mutations.


Subject(s)
Familial Mediterranean Fever/genetics , Familial Mediterranean Fever/metabolism , Inflammasomes/metabolism , Mutation , Pyrin/genetics , Pyrin/metabolism , Animals , Bacterial Toxins/toxicity , CARD Signaling Adaptor Proteins/metabolism , Clostridium Infections/immunology , Clostridium Infections/metabolism , Enterotoxins/toxicity , Familial Mediterranean Fever/immunology , HEK293 Cells , Humans , Inflammasomes/drug effects , Inflammasomes/immunology , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubules/drug effects , Microtubules/immunology , Microtubules/metabolism , Pyrin/immunology , Tubulin/metabolism
17.
Semin Immunopathol ; 37(4): 313-22, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25895577

ABSTRACT

Over recent years, inflammasomes have emerged as key regulators of immune and inflammatory responses. They induce programmed cell death and direct the release of danger signals and the inflammatory cytokines interleukin (IL)-1ß and IL-18. The concerted actions of inflammasomes are of utmost importance for responding adequately to harmful environmental agents and infections. However, deregulated inflammasome signaling is increasingly linked to a diversity of human pathologies, including rheumatoid arthritis, inflammatory bowel disease, and rare, hereditary periodic fever syndromes. In this review, we discuss recent insight in the protective and detrimental roles of inflammasomes in selected infectious, autoinflammatory and autoimmune diseases, and cover clinically approved therapies that interfere with inflammasome signaling. These findings highlight the importance of fine-balancing the Ying and Yang activities of inflammasomes for sustained homeostasis and suggest that further understanding of inflammasome mechanisms may offer new cures for human diseases.


Subject(s)
Autoimmune Diseases/metabolism , Hereditary Autoinflammatory Diseases/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Animals , Autoimmune Diseases/etiology , Host-Pathogen Interactions/immunology , Humans , Inflammation/etiology
SELECTION OF CITATIONS
SEARCH DETAIL