Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 627(8003): 431-436, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383786

ABSTRACT

To survive bacteriophage (phage) infections, bacteria developed numerous anti-phage defence systems1-7. Some of them (for example, type III CRISPR-Cas, CBASS, Pycsar and Thoeris) consist of two modules: a sensor responsible for infection recognition and an effector that stops viral replication by destroying key cellular components8-12. In the Thoeris system, a Toll/interleukin-1 receptor (TIR)-domain protein, ThsB, acts as a sensor that synthesizes an isomer of cyclic ADP ribose, 1''-3' glycocyclic ADP ribose (gcADPR), which is bound in the Smf/DprA-LOG (SLOG) domain of the ThsA effector and activates the silent information regulator 2 (SIR2)-domain-mediated hydrolysis of a key cell metabolite, NAD+ (refs. 12-14). Although the structure of ThsA has been solved15, the ThsA activation mechanism remained incompletely understood. Here we show that 1''-3' gcADPR, synthesized in vitro by the dimeric ThsB' protein, binds to the ThsA SLOG domain, thereby activating ThsA by triggering helical filament assembly of ThsA tetramers. The cryogenic electron microscopy (cryo-EM) structure of activated ThsA revealed that filament assembly stabilizes the active conformation of the ThsA SIR2 domain, enabling rapid NAD+ depletion. Furthermore, we demonstrate that filament formation enables a switch-like response of ThsA to the 1''-3' gcADPR signal.


Subject(s)
Bacteria , Bacterial Proteins , Bacteriophages , Adenosine Diphosphate Ribose/analogs & derivatives , Adenosine Diphosphate Ribose/biosynthesis , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/metabolism , Bacteria/metabolism , Bacteria/virology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Bacteriophages/chemistry , Bacteriophages/metabolism , Bacteriophages/ultrastructure , Cryoelectron Microscopy , Hydrolysis , NAD/metabolism , Protein Domains , Protein Multimerization , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL