Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 33(1): e4840, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984441

ABSTRACT

Autophagy is a highly conserved cellular process that allows degradation of large macromolecules. p62/SQSTM1 is a key adaptor protein that interacts both with material to be degraded and with LC3 at the autophagosome, enabling degradation of cargos such as protein aggregates, lipid droplets and damaged organelles by selective autophagy. Dysregulation of autophagy contributes to the pathogenesis of many diseases. In this study, we investigated if the interaction of p62/SQSTM1 with LC3B could be regulated. We purified full-length p62/SQSTM1 and established an in vitro assay that measures the interaction with LC3B. We used the assay to determine the role of the different domains of p62/SQSTM1 in the interaction with LC3B. We identified a mechanism of regulation of p62/SQSTM1 where the ZZ and the PB1 domains regulate the exposure of the LIR-sequence to enable or inhibit the interaction with LC3B. A mutation to mimic the phosphorylation of a site on the ZZ domain leads to increased interaction with LC3B. Also, a small compound that binds to the ZZ domain enhances interaction with LC3B. Dysregulation of these mechanisms in p62/SQSTM1 could have implications for diseases where autophagy is affected. In conclusion, our study highlights the regulated nature of p62/SQSTM1 and its ability to modulate the interaction with LC3B through a LIR-sequence Accessibility Mechanism (LAM). Furthermore, our findings suggest the potential for pharmacological modulation of the exposure of LIR, paving the way for future therapeutic strategies.


Subject(s)
Autophagosomes , Microtubule-Associated Proteins , Autophagosomes/metabolism , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Autophagy/genetics
2.
Sci Signal ; 16(789): eadd3184, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311034

ABSTRACT

The activation of at least 23 different mammalian kinases requires the phosphorylation of their hydrophobic motifs by the kinase PDK1. A linker connects the phosphoinositide-binding PH domain to the catalytic domain, which contains a docking site for substrates called the PIF pocket. Here, we used a chemical biology approach to show that PDK1 existed in equilibrium between at least three distinct conformations with differing substrate specificities. The inositol polyphosphate derivative HYG8 bound to the PH domain and disrupted PDK1 dimerization by stabilizing a monomeric conformation in which the PH domain associated with the catalytic domain and the PIF pocket was accessible. In the absence of lipids, HYG8 potently inhibited the phosphorylation of Akt (also termed PKB) but did not affect the intrinsic activity of PDK1 or the phosphorylation of SGK, which requires docking to the PIF pocket. In contrast, the small-molecule valsartan bound to the PIF pocket and stabilized a second distinct monomeric conformation. Our study reveals dynamic conformations of full-length PDK1 in which the location of the linker and the PH domain relative to the catalytic domain determines the selective phosphorylation of PDK1 substrates. The study further suggests new approaches for the design of drugs to selectively modulate signaling downstream of PDK1.


Subject(s)
Mammals , Polyphosphates , Animals , Substrate Specificity , Phosphorylation , Catalytic Domain , Dimerization
3.
ChemMedChem ; 15(18): 1682-1690, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32663362

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) is the human receptor that interacts with the spike protein of coronaviruses, including the one that produced the 2020 coronavirus pandemic (COVID-19). Thus, ACE2 is a potential target for drugs that disrupt the interaction of human cells with SARS-CoV-2 to abolish infection. There is also interest in drugs that inhibit or activate ACE2, that is, for cardiovascular disorders or colitis. Compounds binding at alternative sites could allosterically affect the interaction with the spike protein. Herein, we review biochemical, chemical biology, and structural information on ACE2, including the recent cryoEM structures of full-length ACE2. We conclude that ACE2 is very dynamic and that allosteric drugs could be developed to target ACE2. At the time of the 2020 pandemic, we suggest that available ACE2 inhibitors or activators in advanced development should be tested for their ability to allosterically displace the interaction between ACE2 and the spike protein.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/metabolism , Betacoronavirus/chemistry , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Allosteric Regulation , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/chemistry , Catalytic Domain , Humans , Peptidyl-Dipeptidase A/chemistry , Protein Binding , Protein Domains , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
4.
Adv Exp Med Biol ; 1163: 279-311, 2019.
Article in English | MEDLINE | ID: mdl-31707708

ABSTRACT

Allostery is a basic principle that enables proteins to process and transmit cellular information. Protein kinases evolved allosteric mechanisms to transduce cellular signals to downstream signalling components or effector molecules. Protein kinases catalyse the transfer of the terminal phosphate from ATP to protein substrates upon specific stimuli. Protein kinases are targets for the development of small molecule inhibitors for the treatment of human diseases. Drug development has focussed on ATP-binding site, while there is increase interest in the development of drugs targeting alternative sites, i.e. allosteric sites. Here, we review the mechanism of regulation of protein kinases, which often involve the allosteric modulation of the ATP-binding site, enhancing or inhibiting activity. We exemplify the molecular mechanism of allostery in protein kinases downstream of PI3-kinase signalling with a focus on phosphoinositide-dependent protein kinase 1 (PDK1), a model kinase where small compounds can allosterically modulate the conformation of the kinase bidirectionally.


Subject(s)
Drug Development , Phosphatidylinositol 3-Kinases , Protein Kinases , Signal Transduction , Allosteric Regulation , Allosteric Site , Humans , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...