Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Proc Natl Acad Sci U S A ; 117(16): 8813-8819, 2020 04 21.
Article En | MEDLINE | ID: mdl-32253300

The timing of human colonization of East Polynesia, a vast area lying between Hawai'i, Rapa Nui, and New Zealand, is much debated and the underlying causes of this great migration have been enigmatic. Our study generates evidence for human dispersal into eastern Polynesia from islands to the west from around AD 900 and contemporaneous paleoclimate data from the likely source region. Lake cores from Atiu, Southern Cook Islands (SCIs) register evidence of pig and/or human occupation on a virgin landscape at this time, followed by changes in lake carbon around AD 1000 and significant anthropogenic disturbance from c. AD 1100. The broader paleoclimate context of these early voyages of exploration are derived from the Atiu lake core and complemented by additional lake cores from Samoa (directly west) and Vanuatu (southwest) and published hydroclimate proxies from the Society Islands (northeast) and Kiribati (north). Algal lipid and leaf wax biomarkers allow for comparisons of changing hydroclimate conditions across the region before, during, and after human arrival in the SCIs. The evidence indicates a prolonged drought in the likely western source region for these colonists, lasting c. 200 to 400 y, contemporaneous with the phasing of human dispersal into the Pacific. We propose that drying climate, coupled with documented social pressures and societal developments, instigated initial eastward exploration, resulting in SCI landfall(s) and return voyaging, with colonization a century or two later. This incremental settlement process likely involved the accumulation of critical maritime knowledge over several generations.


Archaeology/methods , Droughts , Geologic Sediments/analysis , Human Migration/history , History, Ancient , Humans , Lakes , Polynesia
2.
Science ; 359(6378): 908-911, 2018 02 23.
Article En | MEDLINE | ID: mdl-29472482

Ocean acidification refers to the lowering of the ocean's pH due to the uptake of anthropogenic CO2 from the atmosphere. Coral reef calcification is expected to decrease as the oceans become more acidic. Dissolving calcium carbonate (CaCO3) sands could greatly exacerbate reef loss associated with reduced calcification but is presently poorly constrained. Here we show that CaCO3 dissolution in reef sediments across five globally distributed sites is negatively correlated with the aragonite saturation state (Ωar) of overlying seawater and that CaCO3 sediment dissolution is 10-fold more sensitive to ocean acidification than coral calcification. Consequently, reef sediments globally will transition from net precipitation to net dissolution when seawater Ωar reaches 2.92 ± 0.16 (expected circa 2050 CE). Notably, some reefs are already experiencing net sediment dissolution.


Anthozoa/growth & development , Calcium Carbonate/chemistry , Coral Reefs , Seawater/chemistry , Acids/chemistry , Animals , Calcification, Physiologic , Hydrogen-Ion Concentration
3.
Proc Natl Acad Sci U S A ; 113(13): 3476-81, 2016 Mar 29.
Article En | MEDLINE | ID: mdl-26976574

Tropical maritime precipitation affects global atmospheric circulation, influencing storm tracks and the size and location of subtropical deserts. Paleoclimate evidence suggests centuries-long changes in rainfall in the tropical Pacific over the past 2,000 y, but these remain poorly characterized across most of the ocean where long, continuous proxy records capable of resolving decadal-to-centennial climate changes are still virtually nonexistent despite substantial efforts to develop them. Here we apply a new climate proxy based on paired hydrogen isotope ratios from microalgal and mangrove-derived sedimentary lipids in the Galápagos to reconstruct maritime precipitation changes during the Common Era. We show that increased rainfall during the Little Ice Age (LIA) (∼1400-1850 CE) was likely caused by a southward migration of the Intertropical Convergence Zone (ITCZ), and that this shift occurred later than previously recognized, coeval with dynamically linked precipitation changes in South America and the western tropical Pacific. Before the LIA, we show that drier conditions at the onset of the Medieval Warm Period (∼800-1300 CE) and wetter conditions ca. 2 ka were caused by changes in the El Niño/Southern Oscillation (ENSO). Collectively, the large natural variations in tropical rainfall we detect, each linked to a multicentury perturbation of either ENSO-like variability or the ITCZ, imply a high sensitivity of tropical Pacific rainfall to climate forcings.


Microalgae/metabolism , Tropical Climate , Wetlands , Biomarkers/metabolism , Deuterium/metabolism , Ecuador , El Nino-Southern Oscillation , Geologic Sediments/analysis , History, Ancient , Hydrogen/metabolism , Lakes/analysis , Pacific Ocean , Seawater/analysis
4.
PLoS One ; 10(11): e0141643, 2015.
Article En | MEDLINE | ID: mdl-26576007

The hydrogen isotope (2H/1H) ratio of lipids from phytoplankton is a powerful new tool for reconstructing hydroclimate variations in the geologic past from marine and lacustrine sediments. Water 2H/1H changes are reflected in lipid 2H/1H changes with R2 > 0.99, and salinity variations have been shown to cause about a 1‰ change in lipid δ2H values per unit (ppt) change in salinity. Less understood are the effects of growth rate, nutrient limitation and light on 2H/1H fractionation in phytoplankton. Here we present the first published study of growth rate effects on 2H/1H fractionation in the lipids of coccolithophorids grown in continuous cultures. Emiliania huxleyi was cultivated in steady state at four growth rates and the δ2H value of individual alkenones (C37:2, C37:3, C38:2, C38:3), fatty acids (C14:0, C16:0, C18:0), and 24-methyl cholest-5,22-dien-3ß-ol (brassicasterol) were measured. 2H/1H fractionation increased in all lipids as growth rate increased by 24‰ to 79‰ (div d-1)-1. We attribute this response to a proportional increase in the fraction of NADPH from Photosystem I (PS1) of photosynthesis relative to NADPH from the cytosolic oxidative pentose phosphate (OPP) pathway in the synthesis of lipids as growth rate increases. A 3-endmember model is presented in which lipid hydrogen comes from NADPH produced in PS1, NADPH produced by OPP, and intracellular water. With published values or best estimates of the fractionation factors for these sources (αPS1 = 0.4, αOPP = 0.75, and αH2O = 0) and half of the hydrogen in a lipid derived from water the model indicates αlipid = 0.79. This value is within the range measured for alkenones (αalkenone = 0.77 to 0.81) and fatty acids (αFA = 0.75 to 0.82) in the chemostat cultures, but is greater than the range for brassicasterol (αbrassicasterol = 0.68 to 0.72). The latter is attributed to a greater proportion of hydrogen from NADPH relative to water in isoprenoid lipids. The model successfully explains the increase in 2H/1H fractionation in the sterol 24-methyl-cholesta-5,24(28)-dien-3ß-ol from marine centric diatom T. pseudonana chemostat cultures as growth rate increases. Insensitivity of αFA in those same cultures may be attributable to a larger fraction of hydrogen in fatty acids sourced from intracellular water at the expense of NADPH as growth rate increases. The high sensitivity of α to growth rate in E. huxleyi lipids and a T. pseudonana sterol implies that any change in growth rate larger than ~0.15 div d-1 can cause a change in δ2Hlipid that is larger than the analytical error of the measurement (~5‰), and needs to be considered when interpreting δ2Hlipid variations in sediments.


Diatoms/growth & development , Haptophyta/growth & development , Cholestadienols/metabolism , Deuterium/metabolism , Diatoms/metabolism , Haptophyta/metabolism , Lipid Metabolism , Phytosterols/metabolism , Salinity
5.
Plant Cell Environ ; 38(12): 2674-87, 2015 Dec.
Article En | MEDLINE | ID: mdl-26013204

Hydrogen isotope ratios ((2) H/(1) H, δ(2) H) of leaf waxes covary with those in precipitation and are therefore a useful paleohydrologic proxy. Mangroves are an exception to this relationship because their δ(2) H values are also influenced by salinity. The mechanisms underlying this response were investigated by measuring leaf lipid δ(2) H and leaf and xylem water δ(2) H and δ(18) O values from three mangrove species over 9.5 months in a subtropical Australian estuary. Net (2) H/(1) H fractionation between surface water and leaf lipids decreased by 0.5-1.0‰ ppt(-1) for n-alkanes and 0.4-0.8‰ ppt(-1) for isoprenoids. Xylem water was (2) H depleted relative to surface water, reflecting (2) H discrimination of 4-10‰ during water uptake at all salinities and opportunistic uptake of freshwater at high salinity. However, leaf water (2) H enrichment relative to estuary water was insensitive to salinity and identical for all species. Therefore, variations in leaf and xylem water δ(2) H values cannot explain the salinity-dependent (2) H depletion in leaf lipids, nor the 30‰ range in leaf lipid δ(2) H values among species. Biochemical changes in direct response to salt stress, such as increased compatible solute production or preferential use of stored carbohydrates, and/or the timing of lipid production and subsequent turnover rates, are more likely causes.


Avicennia/metabolism , Hydrogen/metabolism , Rhizophoraceae/metabolism , Water/metabolism , Deuterium/analysis , Oxygen Isotopes/analysis , Plant Leaves/metabolism , Rain , Salinity , Xylem/metabolism
6.
Science ; 345(6200): 1045-8, 2014 Aug 29.
Article En | MEDLINE | ID: mdl-25103408

Understanding the response of the El Niño-Southern Oscillation (ENSO) to global warming requires quantitative data on ENSO under different climate regimes. Here, we present a reconstruction of ENSO in the eastern tropical Pacific spanning the past 10,000 years derived from oxygen isotopes in fossil mollusk shells from Peru. We found that ENSO variance was close to the modern level in the early Holocene and severely damped ~4000 to 5000 years ago. In addition, ENSO variability was skewed toward cold events along coastal Peru 6700 to 7500 years ago owing to a shift of warm anomalies toward the Central Pacific. The modern ENSO regime was established ~3000 to 4500 years ago. We conclude that ENSO was sensitive to changes in climate boundary conditions during the Holocene, including but not limited to insolation.


Global Warming/history , Animal Shells/chemistry , Animals , Cold Temperature , Fossils , History, Ancient , Mollusca/chemistry , Oxygen Isotopes/analysis , Pacific Ocean , Peru
7.
Philos Trans A Math Phys Eng Sci ; 372(2019): 20130054, 2014 Jul 13.
Article En | MEDLINE | ID: mdl-24891398

Fluxes of lithogenic material and fluxes of three palaeo-productivity proxies (organic carbon, biogenic opal and alkenones) over the past 100,000 years were determined using the (230)Th-normalization method in three sediment cores from the Subantarctic South Atlantic Ocean. Features in the lithogenic flux record of each core correspond to similar features in the record of dust deposition in the EPICA Dome C ice core. Biogenic fluxes correlate with lithogenic fluxes in each sediment core. Our preferred interpretation is that South American dust, most probably from Patagonia, constitutes a major source of lithogenic material in Subantarctic South Atlantic sediments, and that past biological productivity in this region responded to variability in the supply of dust, probably due to biologically available iron carried by the dust. Greater nutrient supply as well as greater nutrient utilization (stimulated by dust) contributed to Subantarctic productivity during cold periods, in contrast to the region south of the Antarctic Polar Front (APF), where reduced nutrient supply during cold periods was the principal factor limiting productivity. The anti-phased patterns of productivity on opposite sides of the APF point to shifts in the physical supply of nutrients and to dust as cofactors regulating productivity in the Southern Ocean.


Dust/analysis , Food , Models, Biological , Seawater/chemistry , Antarctic Regions , Atlantic Ocean , Geologic Sediments/chemistry , Iron/analysis , Phytoplankton/metabolism , Time Factors
8.
PLoS One ; 9(3): e90939, 2014.
Article En | MEDLINE | ID: mdl-24638020

Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.


Climate , Geologic Sediments , Ponds , Fresh Water/chemistry , Geography , Humans , Hydrogen-Ion Concentration , Lakes , Micronesia , Oxygen/chemistry , Salinity , Temperature
9.
Front Genet ; 4: 269, 2013.
Article En | MEDLINE | ID: mdl-24348520

The Galápagos Islands are known to have experienced significant drought during the Quaternary. The loss of mesophytic upland habitats has been suggested to underlie the relatively lower endemism of upland compared with lowland plant assemblages. A fossil pollen record spanning the last 26,000 years from an upland bog on Santa Cruz Island, revealed the persistent presence of highland pollen and spore types during the last glacial maximum and a millennial-scale series of droughts in the mid Holocene. The absence of lowland taxa and presence of mesic taxa led to the conclusion that the highland flora of the Galápagos persisted during both these periods. The resiliency of the highland flora of the Galápagos to long-term drought contradicts an earlier hypothesis that an extinction of highland taxa occurred during the last glacial maximum and that rapid Holocene speciation created the modern plant assemblage within the last 10,000 years. Based on the palynological data, we suggest that, even during the height of glacial and Holocene droughts, cool sea-surface temperatures and strong trade-wind activity would have promoted persistent ground level cloudiness that provided the necessary moisture inputs to maintain microrefugia for mesophytic plants. Although moist conditions were maintained, the lack of precipitation caused the loss of open water habitat during such events, and accounts for the known extinctions of species such as Azolla sp., and Elatine sp., while other moisture dependent taxa, i.e., Cyathea weatherbyana, persisted.

10.
Environ Sci Technol ; 47(9): 4181-8, 2013 May 07.
Article En | MEDLINE | ID: mdl-23597056

Both cinnabar (HgS) and metallic mercury (Hg(0)) were important resources throughout Andean prehistory. Cinnabar was used for millennia to make vermillion, a red pigment that was highly valued in pre-Hispanic Peru; metallic Hg(0) has been used since the mid-16th century to conduct mercury amalgamation, an efficient process of extracting precious metals from ores. However, little is known about which cinnabar deposits were exploited by pre-Hispanic cultures, and the environmental consequences of Hg mining and amalgamation remain enigmatic. Here we use Hg isotopes to source archeological cinnabar and to fingerprint Hg pollution preserved in lake sediment cores from Peru and the Galápagos Islands. Both pre-Inca (pre-1400 AD) and Colonial (1532-1821 AD) archeological artifacts contain cinnabar that matches isotopically with cinnabar ores from Huancavelica, Peru, the largest cinnabar-bearing district in Central and South America. In contrast, the Inca (1400-1532 AD) artifacts sampled are characterized by a unique Hg isotopic composition. In addition, preindustrial (i.e., pre-1900 AD) Hg pollution preserved in lake sediments matches closely the isotopic composition of cinnabar from the Peruvian Andes. Industrial-era Hg pollution, in contrast, is distinct isotopically from preindustrial emissions, suggesting that pre- and postindustrial Hg emissions may be distinguished isotopically in lake sediment cores.


Culture , Mercury Compounds , Mercury , Archaeology , Geologic Sediments/chemistry , History, Ancient , Isotopes , Mining , Peru , Water Pollutants, Chemical/analysis
12.
Saline Syst ; 4: 3, 2008 Apr 22.
Article En | MEDLINE | ID: mdl-18430240

BACKGROUND: The Northern Great Plains of Canada are home to numerous permanent and ephemeral athalassohaline lakes. These lakes display a wide range of ion compositions, salinities, stratification patterns, and ecosystems. Many of these lakes are ecologically and economically significant to the Great Plains Region. A survey of the physical characteristics and chemistry of 19 lakes was carried out to assess their suitability for testing new tools for determining past salinity from the sediment record. RESULTS: Data on total dissolved solids (TDS), specific conductivity, temperature, dissolved oxygen (DO), and pH were measured in June, 2007. A comparison of these data with past measurements indicates that salinity is declining at Little Manitou and Big Quill Lakes in the province of Saskatchewan. However salinity is rising at other lakes in the region, including Redberry and Manito Lakes. CONCLUSION: The wide range of salinities found across a small geographic area makes the Canadian saline lakes region ideal for testing salinity proxies. A nonlinear increase in salinity at Redberry Lake is likely influenced by its morphometry. This acceleration has ecological implications for the migratory bird species found within the Redberry Important Bird Area.

13.
J Chromatogr A ; 1169(1-2): 70-6, 2007 Oct 26.
Article En | MEDLINE | ID: mdl-17897659

A semi-preparative normal-phase high-performance liquid chromatography-mass spectrometry (HPLC-MS) method is presented for the purification of various alcohol fractions from total lipid extracts derived from sediments, for the purpose of hydrogen isotopic measurement by gas chromatography-isotope ratio mass spectrometry (GC-IRMS). 4-methylsterols, including the dinoflagellate-specific marker dinosterol (4,23,24-trimethylcholestan-22-en-3beta-ol), were successfully separated from notoriously co-eluting plant-derived pentacyclic triterpenoid alcohols and alkyl alcohols. We find that substantial hydrogen isotope fractionation occurs during chromatographic separation, demonstrating the importance of recovering the entire peak when subsequent hydrogen isotope analyses are to be performed. This is the first report of such hydrogen isotopic fractionation for a natural unlabelled compound.


Cholestenes/isolation & purification , Chromatography, High Pressure Liquid , Deuterium/analysis , Hydrogen/analysis , Mass Spectrometry , Chemical Fractionation , Deuterium/chemistry , Geologic Sediments/analysis , Hydrogen/chemistry , Reproducibility of Results , Sensitivity and Specificity
14.
Saline Syst ; 2: 8, 2006 Jul 03.
Article En | MEDLINE | ID: mdl-16817958

The equatorial Pacific Ocean atoll islands of Kiritimati and Teraina encompass great physical, chemical and biological variability within extreme lacustrine environments. Surveys of lake chemistry and sediments revealed both intra- and inter-island variability. A survey of more than 100 lakes on Kiritimati found salinities from nearly fresh to 150 ppt with the highest values occurring within the isolated, inland portions of the island away from the influence of groundwater or extreme tides. Dissolved oxygen (DO) and pH values also showed considerable variability with a less regular spatial pattern, but were both generally inversely related to salinity. Series of lakes, progressively more isolated from marine communication, present a modern analog to the chemical and morphologic evolution of presently isolated basins. Sediments on both islands consist of interbedded red and green silt, possibly degraded bacterial mat, overlying white, mineralogenic silt precipitate. Variability may be indicative of shifts in climatological parameters such as the El Niño Southern Oscillation (ENSO) or the Pacific Intertropical Convergence Zone (ITCZ).

15.
Nature ; 434(7037): 1118-21, 2005 Apr 28.
Article En | MEDLINE | ID: mdl-15858571

Massive iceberg discharges from the Northern Hemisphere ice sheets, 'Heinrich events', coincided with the coldest periods of the last ice age. There is widespread evidence for Heinrich events and their profound impact on the climate and circulation of the North Atlantic Ocean, but their influence beyond that region remains uncertain. Here we use a combination of molecular fingerprints of algal productivity and radioisotope tracers of sedimentation to document eight periods of increased productivity in the subpolar Southern Ocean during the past 70,000 years that occurred within 1,000-2,000 years of a Northern Hemisphere Heinrich event. We discuss possible causes for such a link, including increased supply of iron from upwelling and increased stratification during the growing season, which imply an alteration of the global ocean circulation during Heinrich events. The mechanisms linking North Atlantic iceberg discharges with subantarctic productivity remain unclear at this point. We suggest that understanding how the Southern Ocean was altered during these extreme climate perturbations is critical to understanding the role of the ocean in climate change.


Cold Climate , Ice Cover , Water Movements , Antarctic Regions , Eukaryota/chemistry , Eukaryota/metabolism , Geologic Sediments/chemistry , Iron/analysis , Lipids/analysis , Oceans and Seas , Phytoplankton/chemistry , Phytoplankton/metabolism , Plants/chemistry , Seasons , Seawater/chemistry , Time Factors
16.
Science ; 297(5579): 226-30, 2002 Jul 12.
Article En | MEDLINE | ID: mdl-12114619

Sea surface temperatures (SSTs) in the cold tongue of the eastern equatorial Pacific exert powerful controls on global atmospheric circulation patterns. We examined climate variability in this region from the Last Glacial Maximum (LGM) to the present, using a SST record reconstructed from magnesium/calcium ratios in foraminifera from sea-floor sediments near the Galápagos Islands. Cold-tongue SST varied coherently with precession-induced changes in seasonality during the past 30,000 years. Observed LGM cooling of just 1.2 degrees C implies a relaxation of tropical temperature gradients, weakened Hadley and Walker circulation, southward shift of the Intertropical Convergence Zone, and a persistent El Niño-like pattern in the tropical Pacific. This is contrasted with mid-Holocene cooling suggestive of a La Niña-like pattern with enhanced SST gradients and strengthened trade winds. Our results support a potent role for altered tropical Pacific SST gradients in global climate variations.

...