Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Blood ; 137(21): 2947-2957, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33259592

ABSTRACT

BH3 mimetics like venetoclax target prosurvival Bcl-2 family proteins and are important therapeutics in the treatment of hematological malignancies. We demonstrate that endogenous Bfl-1 expression can render preclinical lymphoma tumor models insensitive to Mcl-1 and Bcl-2 inhibitors. However, suppression of Bfl-1 alone was insufficient to fully induce apoptosis in Bfl-1-expressing lymphomas, highlighting the need for targeting additional prosurvival proteins in this context. Importantly, we demonstrated that cyclin-dependent kinase 9 (CDK9) inhibitors rapidly downregulate both Bfl-1 and Mcl-1, inducing apoptosis in BH3-mimetic-resistant lymphoma cell lines in vitro and driving in vivo tumor regressions in diffuse large B-cell lymphoma patient-derived xenograft models expressing Bfl-1. These data underscore the need to clinically develop CDK9 inhibitors, like AZD4573, for the treatment of lymphomas using Bfl-1 as a selection biomarker.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Macrocyclic Compounds/pharmacology , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Line, Tumor , Cyclin-Dependent Kinase 9/physiology , Cycloheximide/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Leupeptins/pharmacology , Macrocyclic Compounds/therapeutic use , Mice , Mice, Inbred NOD , Mice, SCID , Minor Histocompatibility Antigens/biosynthesis , Minor Histocompatibility Antigens/genetics , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Peptide Fragments/antagonists & inhibitors , Piperazines/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Proto-Oncogene Proteins c-bcl-2/genetics , Pyridines/pharmacology , Sulfonamides/therapeutic use , Xenograft Model Antitumor Assays
2.
Clin Cancer Res ; 26(24): 6535-6549, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32988967

ABSTRACT

PURPOSE: Targeting Bcl-2 family members upregulated in multiple cancers has emerged as an important area of cancer therapeutics. While venetoclax, a Bcl-2-selective inhibitor, has had success in the clinic, another family member, Bcl-xL, has also emerged as an important target and as a mechanism of resistance. Therefore, we developed a dual Bcl-2/Bcl-xL inhibitor that broadens the therapeutic activity while minimizing Bcl-xL-mediated thrombocytopenia. EXPERIMENTAL DESIGN: We used structure-based chemistry to design a small-molecule inhibitor of Bcl-2 and Bcl-xL and assessed the activity against in vitro cell lines, patient samples, and in vivo models. We applied pharmacokinetic/pharmacodynamic (PK/PD) modeling to integrate our understanding of on-target activity of the dual inhibitor in tumors and platelets across dose levels and over time. RESULTS: We discovered AZD4320, which has nanomolar affinity for Bcl-2 and Bcl-xL, and mechanistically drives cell death through the mitochondrial apoptotic pathway. AZD4320 demonstrates activity in both Bcl-2- and Bcl-xL-dependent hematologic cancer cell lines and enhanced activity in acute myeloid leukemia (AML) patient samples compared with the Bcl-2-selective agent venetoclax. A single intravenous bolus dose of AZD4320 induces tumor regression with transient thrombocytopenia, which recovers in less than a week, suggesting a clinical weekly schedule would enable targeting of Bcl-2/Bcl-xL-dependent tumors without incurring dose-limiting thrombocytopenia. AZD4320 demonstrates monotherapy activity in patient-derived AML and venetoclax-resistant xenograft models. CONCLUSIONS: AZD4320 is a potent molecule with manageable thrombocytopenia risk to explore the utility of a dual Bcl-2/Bcl-xL inhibitor across a broad range of tumor types with dysregulation of Bcl-2 prosurvival proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Hematologic Neoplasms/drug therapy , Piperidines/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfones/pharmacology , Thrombocytopenia/drug therapy , bcl-X Protein/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Apoptosis , Benzamides/therapeutic use , Cell Proliferation , Female , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Piperidines/therapeutic use , Sulfones/therapeutic use , Thrombocytopenia/metabolism , Thrombocytopenia/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Clin Cancer Res ; 26(4): 922-934, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31699827

ABSTRACT

PURPOSE: Cyclin-dependent kinase 9 (CDK9) is a transcriptional regulator and potential therapeutic target for many cancers. Multiple nonselective CDK9 inhibitors have progressed clinically but were limited by a narrow therapeutic window. This work describes a novel, potent, and highly selective CDK9 inhibitor, AZD4573. EXPERIMENTAL DESIGN: The antitumor activity of AZD4573 was determined across broad cancer cell line panels in vitro as well as cell line- and patient-derived xenograft models in vivo. Multiple approaches, including integrated transcriptomic and proteomic analyses, loss-of-function pathway interrogation, and pharmacologic comparisons, were employed to further understand the major mechanism driving AZD4573 activity and to establish an exposure/effect relationship. RESULTS: AZD4573 is a highly selective and potent CDK9 inhibitor. It demonstrated rapid induction of apoptosis and subsequent cell death broadly across hematologic cancer models in vitro, and MCL-1 depletion in a dose- and time-dependent manner was identified as a major mechanism through which AZD4573 induces cell death in tumor cells. This pharmacodynamic (PD) response was also observed in vivo, which led to regressions in both subcutaneous tumor xenografts and disseminated models at tolerated doses both as monotherapy or in combination with venetoclax. This understanding of the mechanism, exposure, and antitumor activity of AZD4573 facilitated development of a robust pharmacokinetic/PD/efficacy model used to inform the clinical trial design. CONCLUSIONS: Selective targeting of CDK9 enables the indirect inhibition of MCL-1, providing a therapeutic option for MCL-1-dependent diseases. Accordingly, AZD4573 is currently being evaluated in a phase I clinical trial for patients with hematologic malignancies (clinicaltrials.gov identifier: NCT03263637).See related commentary by Alcon et al., p. 761.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Apoptosis/drug effects , Cyclin-Dependent Kinase 9 , Humans , Myeloid Cell Leukemia Sequence 1 Protein , Proteomics
4.
Clin Cancer Res ; 23(24): 7608-7620, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28974548

ABSTRACT

Purpose: Steroidal androgens suppress androgen receptor and estrogen receptor positive (AR/ER+) breast cancer cells and were used to treat breast cancer, eliciting favorable response. The current study evaluates the activity and efficacy of the oral selective AR modulator RAD140 in in vivo and in vitro models of AR/ER+ breast cancer.Experimental Design: A series of in vitro assays were used to determine the affinity of RAD140 to 4 nuclear receptors and evaluate its tissue-selective AR activity. The efficacy and pharmacodynamics of RAD140 as monotherapy or in combination with palbociclib were evaluated in AR/ER+ breast cancer xenograft models.Results: RAD140 bound AR with high affinity and specificity and activated AR in breast cancer but not prostate cancer cells. Oral administration of RAD140 substantially inhibited the growth of AR/ER+ breast cancer patient-derived xenografts (PDX). Activation of AR and suppression of ER pathway, including the ESR1 gene, were seen with RAD140 treatment. Coadministration of RAD140 and palbociclib showed improved efficacy in the AR/ER+ PDX models. In line with efficacy, a subset of AR-repressed genes associated with DNA replication was suppressed with RAD140 treatment, an effect apparently enhanced by concurrent administration of palbociclib.Conclusions: RAD140 is a potent AR agonist in breast cancer cells with a distinct mechanism of action, including the AR-mediated repression of ESR1 It inhibits the growth of multiple AR/ER+ breast cancer PDX models as a single agent, and in combination with palbociclib. The preclinical data presented here support further clinical investigation of RAD140 in AR/ER+ breast cancer patients. Clin Cancer Res; 23(24); 7608-20. ©2017 AACR.


Subject(s)
Androgens/pharmacology , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Nitriles/pharmacology , Oxadiazoles/pharmacology , Receptors, Androgen/metabolism , Androgens/therapeutic use , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens , Female , Humans , MCF-7 Cells , Mice , Nitriles/therapeutic use , Oxadiazoles/therapeutic use , Receptors, Androgen/genetics , Xenograft Model Antitumor Assays
5.
J Med Chem ; 58(17): 7057-75, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26291341

ABSTRACT

We report here a novel series of benzimidazole sulfonamides that act as antagonists of the S1P1 receptor, identified by exploiting an understanding of the pharmacophore of a high throughput screening (HTS)-derived series of compounds described previously. Lead compound 2 potently inhibits S1P-induced receptor internalization in a cell-based assay (EC50 = 0.05 µM), but has poor physical properties and metabolic stability. Evolution of this compound through structure-activity relationship development and property optimization led to in vivo probes such as 4. However, this compound was unexpectedly found to be a potent CYP3A inducer in human hepatocytes, and thus further chemistry efforts were directed at addressing this liability. By employing a pregnane X receptor (PXR) reporter gene assay to prioritize compounds for further testing in human hepatocytes, we identified lipophilicity as a key molecular property influencing the likelihood of P450 induction. Ultimately, we have identified compounds such as 46 and 47, which demonstrate the desired S1P1 antagonist activity while having greatly reduced risk of CYP3A induction in humans. These compounds have excellent oral bioavailability in preclinical species and exhibit pharmacodynamic effects of S1P1 antagonism in several in vivo models following oral dosing. Relatively modest antitumor activity was observed in multiple xenograft models, however, suggesting that selective S1P1 antagonists would have limited utility as anticancer therapeutics as single agents.


Subject(s)
Benzimidazoles/chemistry , Pyridines/chemistry , Receptors, Lysosphingolipid/antagonists & inhibitors , Sulfonamides/chemistry , Administration, Oral , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Biological Availability , Cells, Cultured , Cytochrome P-450 CYP3A/biosynthesis , Cytochrome P-450 CYP3A Inducers/chemical synthesis , Cytochrome P-450 CYP3A Inducers/chemistry , Cytochrome P-450 CYP3A Inducers/pharmacology , Genes, Reporter , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Models, Molecular , Molecular Structure , Pregnane X Receptor , Pyridines/chemical synthesis , Pyridines/pharmacology , Receptors, Steroid/genetics , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
6.
Bioorg Med Chem Lett ; 25(10): 2041-5, 2015.
Article in English | MEDLINE | ID: mdl-25890801

ABSTRACT

We have discovered a novel class of heterocyclic sulfonamides that act as antagonists of the S1P1 receptor. While members of this series identified from a high-throughput screen showed promising levels of potency in a cell-based assay measuring the inhibition of receptor internalization, most compounds were excessively lipophilic and contained an oxidation-prone thioether moiety. As a result, such compounds suffered from poor physical properties and metabolic stability, limiting their utility as in vivo probes. By removing the thioether group and systematically developing an understanding of structure-activity relationships and the effects of lipophilicity on potency within this series, we have been able to identify potent compounds with vastly improved physical properties. A representative enantiopure triazole sulfonamide (33) has measurable bioavailability following a low (3mg/kg) oral dose in rat, highlighting an achievement of the early hit-to-lead efforts for this series.


Subject(s)
Drug Discovery , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/pharmacology , Receptors, Lysosphingolipid/antagonists & inhibitors , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Animals , Heterocyclic Compounds/chemistry , Protein Binding/drug effects , Rats , Structure-Activity Relationship , Sulfonamides/chemistry
7.
Bioorg Med Chem Lett ; 24(7): 1820-4, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24631189

ABSTRACT

The design and synthesis of a series of novel tricyclic IAP inhibitors is reported. Rapid assembly of the core tricycle involved two key steps: Rh-catalyzed hydrogenation of an unsaturated bicyclic ring system and a Ru-catalyzed ring closing alkene metathesis reaction. The final Smac mimetics bind to cIAP1 and XIAP BIR3 domains and elicit the desired phenotype in cellular proliferation assays. Dimeric IAP inhibitors were found to possess nanomolar potency in a cellular proliferation assay and favourable in vitro drug-like properties.


Subject(s)
Drug Design , Heterocyclic Compounds, 3-Ring/pharmacology , Inhibitor of Apoptosis Proteins/metabolism , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/chemistry , Humans , Inhibitor of Apoptosis Proteins/chemical synthesis , Inhibitor of Apoptosis Proteins/chemistry , Molecular Structure , Structure-Activity Relationship
8.
J Med Chem ; 56(24): 9897-919, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24320998

ABSTRACT

A series of dimeric compounds based on the AVPI motif of Smac were designed and prepared as antagonists of the inhibitor of apoptosis proteins (IAPs). Optimization of cellular potency, physical properties, and pharmacokinetic parameters led to the identification of compound 14 (AZD5582), which binds potently to the BIR3 domains of cIAP1, cIAP2, and XIAP (IC50 = 15, 21, and 15 nM, respectively). This compound causes cIAP1 degradation and induces apoptosis in the MDA-MB-231 breast cancer cell line at subnanomolar concentrations in vitro. When administered intravenously to MDA-MB-231 xenograft-bearing mice, 14 results in cIAP1 degradation and caspase-3 cleavage within tumor cells and causes substantial tumor regressions following two weekly doses of 3.0 mg/kg. Antiproliferative effects are observed with 14 in only a small subset of the over 200 cancer cell lines examined, consistent with other published IAP inhibitors. As a result of its in vitro and in vivo profile, 14 was nominated as a candidate for clinical development.


Subject(s)
Alkynes/pharmacology , Antineoplastic Agents/pharmacology , Biomimetic Materials/pharmacology , Drug Discovery , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Oligopeptides/pharmacology , Alkynes/chemical synthesis , Alkynes/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dimerization , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Inhibitor of Apoptosis Proteins/metabolism , Mice , Molecular Conformation , Neoplasms/pathology , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
Bioorg Med Chem Lett ; 22(4): 1690-4, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22264476

ABSTRACT

A series of structurally unique Smac mimetics that act as antagonists of inhibitor of apoptosis proteins (IAPs) has been discovered. While most previously described Smac mimetics contain the proline ring (or a similar cyclic motif) found in Smac, a key feature of the compounds described herein is that this ring has been removed. Despite this, compounds in this series potently bind to cIAP1 and elicit the expected phenotype of cIAP1 inhibition in cancer cells. Marked selectivity for cIAP1 over XIAP is observed for these compounds, which is attributed to a slight difference in the binding groove between the two proteins and the resulting steric interactions with the inhibitors. XIAP binding can be improved by constraining the inhibitor so that these unfavorable steric interactions are minimized.


Subject(s)
Amines/chemical synthesis , Drug Design , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/chemistry , Mitochondrial Proteins/chemistry , Piperidines/chemical synthesis , Amines/chemistry , Amines/pharmacology , Apoptosis Regulatory Proteins , Biomimetics , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Piperidines/chemistry , Piperidines/pharmacology , Protein Binding/drug effects , Structure-Activity Relationship
10.
J Med Chem ; 49(16): 4805-8, 2006 Aug 10.
Article in English | MEDLINE | ID: mdl-16884290

ABSTRACT

The ability of molecular docking, using the program Glide and an MM-GBSA postdocking scoring protocol, to correctly rank a number of congeneric kinase inhibitors was assessed. The approach was successful for the cases considered and suggests that this may be useful for the design of inhibitors in the lead optimization phase of drug discovery.


Subject(s)
Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Quantitative Structure-Activity Relationship , Aniline Compounds/chemistry , Aurora Kinases , Binding Sites , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Models, Molecular , Morpholines/chemistry , Piperidines/chemistry , Protein Conformation , Pyridines/chemistry , Pyrimidines/chemistry , Thermodynamics , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
11.
J Chem Inf Model ; 45(4): 1122-33, 2005.
Article in English | MEDLINE | ID: mdl-16045307

ABSTRACT

The combination of 3D pharmacophore fingerprints and the support vector machine classification algorithm has been used to generate robust models that are able to classify compounds as active or inactive in a number of G-protein-coupled receptor assays. The models have been tested against progressively more challenging validation sets where steps are taken to ensure that compounds in the validation set are chemically and structurally distinct from the training set. In the most challenging example, we simulate a lead-hopping experiment by excluding an entire class of compounds (defined by a core substructure) from the training set. The left-out active compounds comprised approximately 40% of the actives. The model trained on the remaining compounds is able to recall 75% of the actives from the "new" lead series while correctly classifying >99% of the 5000 inactives included in the validation set.


Subject(s)
Computer Simulation , Dopamine Agents/chemistry , Drug Design , Models, Chemical , Models, Statistical , Receptors, G-Protein-Coupled/chemistry , Databases as Topic , Dopamine Agents/classification
12.
J Chem Phys ; 122(15): 154107, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15945625

ABSTRACT

The accuracy of geometries and harmonic vibrational frequencies is evaluated for two equation-of-motion ionization potential coupled-cluster methods including CC3 and CCSDT-3 triples corrections. The first two Sigma states and first Pi state of the N2 +, CO+, CN, and BO diatomic radicals are studied. The calculations show a tendency for the CC3 variant to overestimate the bond lengths and to underestimate the vibrational frequencies, while the CCSDT-3 variant seems to be more reliable. It is also demonstrated that the accuracy of such methods is comparable to sophisticated traditional multireference approaches and the full configuration interaction method.

SELECTION OF CITATIONS
SEARCH DETAIL