Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article En | MEDLINE | ID: mdl-38542258

As a space project, in "Stem Cells" by the Japan Aerospace Exploration Agency (JAXA), frozen mouse ES cells were stored on the International Space Station (ISS) in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) for 1584 days. After taking these cells back to the ground, the cells were thawed and cultured, and their gene expressions were comprehensively analyzed using RNA sequencing in order to elucidate the early response of the cells to long-time exposure to space radiation consisting of various ionized particles. The comparisons of gene expression involved in double-stranded break (DSB) repair were examined. The expressions of most of the genes that were involved in homologous recombination (HR) and non-homologous end joining (NHEJ) were not significantly changed between the ISS-stocked cells and ground-stocked control cells. However, the transcription of Trp53inp1 (tumor protein 53 induced nuclear protein-1), Cdkn1a (p21), and Mdm2 genes increased in ISS-stocked cells as well as Fe ion-irradiated cells compared to control cells. This suggests that accumulated DNA damage caused by space radiation exposure would activate these genes, which are involved in cell cycle arrest for repair and apoptosis in a p53-dependent or -independent manner, in order to prevent cells with damaged genomes from proliferating and forming tumors.


DNA Breaks, Double-Stranded , Mouse Embryonic Stem Cells , Animals , Mice , DNA Repair , DNA End-Joining Repair , Sequence Analysis, RNA , Gene Expression Profiling
2.
Biomolecules ; 14(1)2024 Jan 10.
Article En | MEDLINE | ID: mdl-38254688

During future space missions, astronauts will be exposed to cosmic radiation and microgravity (µG), which are known to be health risk factors. To examine the differentially expressed genes (DEG) and their prevalent biological processes and pathways as a response to these two risk factors simultaneously, 1BR-hTERT human fibroblast cells were cultured under 1 gravity (1G) or simulated µG for 48 h in total and collected at 0 (sham irradiated), 3 or 24 h after 1 Gy of X-ray or Carbon-ion (C-ion) irradiation. A three-dimensional clinostat was used for the simulation of µG and the simultaneous radiation exposure of the samples. The RNA-seq method was used to produce lists of differentially expressed genes between different environmental conditions. Over-representation analyses were performed and the enriched biological pathways and targeting transcription factors were identified. Comparing sham-irradiated cells under simulated µG and 1G conditions, terms related to response to oxygen levels and muscle contraction were identified. After irradiation with X-rays or C-ions under 1G, identified DEGs were found to be involved in DNA damage repair, signal transduction by p53 class mediator, cell cycle arrest and apoptosis pathways. The same enriched pathways emerged when cells were irradiated under simulated µG condition. Nevertheless, the combined effect attenuated the transcriptional response to irradiation which may pose a subtle risk in space flights.


Weightlessness , Humans , Weightlessness/adverse effects , Radiation, Ionizing , Fibroblasts , Computer Simulation , Gene Expression
3.
Life Sci Space Res (Amst) ; 40: 72-80, 2024 Feb.
Article En | MEDLINE | ID: mdl-38245350

Missions to the Earth's moon are of scientific and societal interest, however pose the problem of risks of late effects for returning crew persons, most importantly cancer and circulatory diseases. In this paper, we discuss NSCR-2022 model risk estimates for lunar missions for US racial and ethnic groups comparing never-smokers (NS) to US averages for each group and sex. We show that differences within groups between men and women are reduced for NS compared to the average population. Race and ethnic group dependent cancer and circulatory disease risks are reduced by 10% to 40% for NS with the largest decrease for Whites. Circulatory disease risks are changed by less than 10% for NS and in several cases modestly increased due to increased lifespan for NS. Asian-Pacific Islanders (API) and Hispanics NS are at lower risk compared to Whites and Blacks. Differences between groups are narrowed for NS compared to predictions for average populations, however disparities remain especially for Blacks and to a lesser extent Whites compared to API or Hispanic NS groups.


Astronauts , Cardiovascular Diseases , Ethnicity , Neoplasms , Racial Groups , Radiation Exposure , Female , Humans , Male , Moon , Neoplasms/epidemiology , Smokers , United States , Risk Assessment , Radiation Exposure/adverse effects , Sex Factors , Cardiovascular Diseases/epidemiology
4.
Front Plant Sci ; 14: 1108186, 2023.
Article En | MEDLINE | ID: mdl-36755696

Background: The sustainability of crop production is impacted by climate change and land degradation, and the advanced application of nanotechnology is of paramount importance to overcome this challenge. The development of nanomaterials based on essential nutrients like zinc could serve as a basis for nanofertilizers and nanocomposite synthesis for broader agricultural applications and quality human nutrition. Therefore, this study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using pecan (Carya illinoinensis) leaf extract and investigate their effect on the growth, physiology, nutrient content, and antioxidant properties of mustard (Brassica juncea). Methods: The ZnO NPs were characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red Spectroscopy (FTIR). Mustard plants were subjected to different concentrations of ZnONPs (0, 20, 40, 60, 80, 100 and 200 mg L-1) during the vegetative growth stage. Results: The UV-Vis spectra of ZnO NPs revealed the absorption maxima at 362 nm and FTIR identified numerous functional groups that are responsible for capping and stabilizing ZnO NPs. DLS analysis presented monodispersed ZnO NPs of 84.5 nm size and highly negative zeta potential (-22.4 mV). Overall, the application of ZnO NPs enhanced the growth, chlorophyll content (by 53 %), relative water content (by 46 %), shoot biomass, membrane stability (by 54 %) and net photosynthesis significantly in a dose-dependent manner. In addition, the supplement of the ZnO NPs augmented K, Fe, Zn and flavonoid contents as well as overcome the effect of reactive oxygen species by increasing antioxidant capacity in mustard leaves up to 97 %. Conclusions: In conclusion, ZnO NPs can be potentially used as a plant growth stimulant and as a novel soil amendment for enhancing crop yields. Besides, the biofortification of B. juncea plants with ZnO NPs helps to improve the nutritional quality of the crop and perhaps potentiates its pharmaceutical effects.

5.
Heliyon ; 8(8): e10266, 2022 Aug.
Article En | MEDLINE | ID: mdl-36061033

Nowadays, ordinary people can travel in space, and the possibility of extended durations in an environment such as moon of the Earth and Mars with higher space radiation exposures compared to past missions, is increasing. Until now, the physical doses of space radiation have been measured, but measurement of direct biological effects has been hampered by its low dose and low dose-rate effect. To assess the biological effects of space radiation, we launched and kept frozen mouse embryonic stem (ES) cells in minus eighty degree Celsius freezer in ISS (MELFI) on the International Space Station (ISS) for a maximum of 1,584 days. The passive dosimeter for life science experiments in space (PADLES) was attached on the surface of the sample case of the ES cells. The physical dosimeter measured the absorbed dose in water. After return, the frozen cells were thawed and cultured and their chromosome aberrations were analyzed. Comparative experiments with proton and iron ion irradiation were performed at particle accelerators on Earth. The wild-type ES cells showed no differences in chromosomal aberrations between the ground control and ISS exposures. However, we detected an increase of chromosome aberrations in radio-sensitized histone H2AX heterozygous-deficient mouse ES cells and found that the rate of increase against the absorbed dose was 1.54-fold of proton irradiation at an accelerator. On the other hand, we estimated the quality factor of space radiation as 1.48 ± 0.2. using formulas of International Commission of Radiation Protection (ICRP) 60. The relative biological effectiveness (RBE) observed from our experiments (1.54-fold of proton) was almost equal (1.04-fold) to the physical estimation (1.48 ± 0.2). It should be important to clarify the relation between biological effect and physical estimates of space radiation. This comparative study paves a way to reveal the complex radiation environments to reduce the uncertainty for risk assessment of human stay in space.

6.
Sci Rep ; 12(1): 2028, 2022 02 07.
Article En | MEDLINE | ID: mdl-35132138

Future space missions by national space agencies and private industry, including space tourism, will include a diverse makeup of crewmembers with extensive variability in age, sex, and race or ethnic groups. The relative risk (RR) model is used to transfer epidemiology data between populations to estimate radiation risks. In the RR model cancer risk is assumed to be proportional to background cancer rates and limited by other causes of death, which are dependent on genetic, environmental and dietary factors that are population dependent. Here we apply the NSCR-2020 model to make the first predictions of age dependent space radiation cancer risks for several U.S. populations, which includes Asian-Pacific Islanders (API), Black, Hispanic (white and black), and White (non-Hispanic) populations. Results suggest that male API and Hispanic populations have the overall lowest cancer risks, while White females have the highest risk. Blacks have similar total cancer rates than Whites, however their reduced life expectancy leads to modestly lower lifetime radiation risks compared to Whites. There are diverse tissue specific cancer risk ranking across sex and race, which include sex specific organ risks, female's having larger lung, stomach, and urinary-bladder radiation risks, and male's having larger colon and brain risks.


Ethnicity , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Radiation-Induced/etiology , Racial Groups , Radiation Exposure/adverse effects , Space Flight , Age Factors , Female , Forecasting , Humans , Life Expectancy , Male , Organ Specificity , Risk , Sex Characteristics
7.
Nucl Instrum Methods Phys Res B ; 502: 136-141, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-34898771

Light ion breakup cross sections are important for studies of cosmic ray interactions in the inter-stellar medium or radiation protection considerations of energy deposition in shielding and tissues. Abrasion cross sections for heavy ion reactions have been modeled using the Glauber model in the large mass limit or Eikonal form of the optical potential model. Here we formulate an abrasion model for 4He fragmentation on protons using the Glauber model avoiding the large mass limit and include a model for final state interactions. Calculations of energy dependent total, absorption, elastic and breakup cross sections for 4He into 3He or 3H with proton targets are shown to be in good agreement with experiments for energies from 100 to 100,000 MeV/u. The Glauber model for light nuclei with and without a large mass limit approximation is shown to be in fair agreement above 300 MeV/u, however important differences occur at lower energies.

8.
Cancers (Basel) ; 12(12)2020 Dec 08.
Article En | MEDLINE | ID: mdl-33302383

Published transcriptomic data from surgically removed metastatic clear cell renal cell carcinoma samples were analyzed from the genomic fabric paradigm (GFP) perspective to identify the best targets for gene therapy. GFP considers the transcriptome as a multi-dimensional mathematical object constrained by a dynamic set of expression controls and correlations among genes. Every gene in the chest wall metastasis, two distinct cancer nodules, and the surrounding normal tissue of the right kidney was characterized by three independent measures: average expression level, relative expression variation, and expression correlation with each other gene. The analyses determined the cancer-induced regulation, control, and remodeling of the chemokine and vascular endothelial growth factor (VEGF) signaling, apoptosis, basal transcription factors, cell cycle, oxidative phosphorylation, renal cell carcinoma, and RNA polymerase pathways. Interestingly, the three cancer regions exhibited different transcriptomic organization, suggesting that the gene therapy should not be personalized only for every patient but also for each major cancer nodule. The gene hierarchy was established on the basis of gene commanding height, and the gene master regulators DAPK3,TASOR, FAM27C and ALG13 were identified in each profiled region. We delineated the molecular mechanisms by which TASOR overexpression and ALG13 silencing would selectively affect the cancer cells with little consequences for the normal cells.

9.
Life (Basel) ; 10(9)2020 Sep 10.
Article En | MEDLINE | ID: mdl-32927618

During space travel, humans are continuously exposed to two major environmental stresses, microgravity (µG) and space radiation. One of the fundamental questions is whether the two stressors are interactive. For over half a century, many studies were carried out in space, as well as using devices that simulated µG on the ground to investigate gravity effects on cells and organisms, and we have gained insights into how living organisms respond to µG. However, our knowledge on how to assess and manage human health risks in long-term mission to the Moon or Mars is drastically limited. For example, little information is available on how cells respond to simultaneous exposure to space radiation and µG. In this study, we analyzed the frequencies of chromosome aberrations (CA) in cultured human lymphoblastic TK6 cells exposed to X-ray or carbon ion under the simulated µG conditions. A higher frequency of both simple and complex types of CA were observed in cells exposed to radiation and µG simultaneously compared to CA frequency in cells exposed to radiation only. Our study shows that the dose response data on space radiation obtained at the 1G condition could lead to the underestimation of astronauts' potential risk for health deterioration, including cancer. This study also emphasizes the importance of obtaining data on the molecular and cellular responses to irradiation under µG conditions.

10.
Life Sci Space Res (Amst) ; 27: 64-73, 2020 Nov.
Article En | MEDLINE | ID: mdl-34756232

We report on the contributions of model factors that appear in projection models to the overall uncertainty in cancer risks predictions for exposures to galactic cosmic ray (GCR) in deep space, including comparisons with revised low LET risks coefficients. Annual GCR exposures to astronauts at solar minimum are considered. Uncertainties in low LET risk coefficients, dose and dose-rate modifiers, quality factors (QFs), space radiation organ doses, non-targeted effects (NTE) and increased tumor lethality at high LET compared to low LET radiation are considered. For the low LET reference radiation parameters we use a revised assessment of excess relative risk (ERR) and excess additive risk (EAR) for radiation induced cancers in the Life-Span Study (LSS) of the Atomic bomb survivors that was recently reported, and also consider ERR estimates for males from the International Study of Nuclear Workers (INWORKS). For 45-y old females at mission age the risk of exposure induced death (REID) per year and 95% confidence intervals is predicted as 1.6% [0.71, 1.63] without QF uncertainties and 1.64% [0.69, 4.06] with QF uncertainties. However, fatal risk predictions increase to 5.83% [2.56, 9.7] based on a sensitivity study of the inclusion of non-targeted effects on risk predictions. For males a comparison using LSS or INWORKS lead to predictions of 1.24% [0.58, 3.14] and 2.45% [1.23, 5.9], respectively without NTEs. The major conclusion of our report is that high LET risk prediction uncertainties due to QFs parameters, NTEs, and possible increase lethality at high LET are dominant contributions to GCR uncertainties and should be the focus of space radiation research.


Cosmic Radiation , Neoplasms, Radiation-Induced , Space Flight , Benchmarking , Cosmic Radiation/adverse effects , Female , Humans , Male , Middle Aged , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Radiation-Induced/etiology , Risk , Risk Assessment , Uncertainty
11.
Int J Mol Sci ; 20(18)2019 Sep 04.
Article En | MEDLINE | ID: mdl-31487843

Previously, we investigated the dose response for chromosomal aberration (CA) for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) particles, and showed that the dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Our results suggested that the simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. Nitric oxide (NO) has been reported as a candidate for intercellular signaling for NTE in many studies. In order to estimate the contribution of NTE components in induced CA, we measured CA with and without an NO scavenger in normal skin fibroblasts cells after exposure to 600 MeV/u and 1 GeV/u 56Fe ions, less than one direct particle traversal per cell nucleus. Yields of CA were significantly lower in fibroblasts exposed to the NO scavenger compared to controls, suggesting involvement of NO in cell signaling for induction of CA. Media transferred from irradiated cells induced CA in non-irradiated cells, and this effect was abrogated with NO scavengers. Our results strongly support the importance of NTE contributions in the formation of CA at low-particle fluence in fibroblasts.


Chromosome Aberrations/radiation effects , Heavy Ions , Nitric Oxide/metabolism , Cell Line , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Signal Transduction
12.
Radiat Prot Dosimetry ; 183(1-2): 213-218, 2019 May 01.
Article En | MEDLINE | ID: mdl-30576527

Cancer risk is an important limitation for galactic cosmic ray (GCR) exposures, which consist of a wide-energy range of protons, heavy ions and secondary radiation produced in shielding and tissues. Many studies suggest non-targeted effects (NTEs) occur for low doses of high-linear energy transfer (LET) radiation, leading to deviation from the linear dose response model used in radiation protection. We investigate corrections to quality factors (QF) for NTEs, which are used in predictions of fatal cancer risks for exploration missions. Prediction of fatal cancer risks for missions to the Martian moon, Phobos of 500-d and the Earth's moon of 365-d for average solar minimum condition show increases of 2- to 4-fold higher in the NTE model compared with the conventional model. Limitations in estimating uncertainties in NTE model parameters due to sparse radiobiology data at low doses are discussed.


Cosmic Radiation/adverse effects , Neoplasms, Radiation-Induced/prevention & control , Radiation Protection/methods , Space Flight , Astronauts , Humans , Linear Energy Transfer , Mars , Moon , Risk Assessment , Risk Factors
13.
Int J Mol Sci ; 20(1)2018 Dec 22.
Article En | MEDLINE | ID: mdl-30583489

Space radiation and microgravity (µG) are two major environmental stressors for humans in space travel. One of the fundamental questions in space biology research is whether the combined effects of µG and exposure to cosmic radiation are interactive. While studies addressing this question have been carried out for half a century in space or using simulated µG on the ground, the reported results are ambiguous. For the assessment and management of human health risks in future Moon and Mars missions, it is necessary to obtain more basic data on the molecular and cellular responses to the combined effects of radiation and µG. Recently we incorporated a µG⁻irradiation system consisting of a 3D clinostat synchronized to a carbon-ion or X-ray irradiation system. Our new experimental setup allows us to avoid stopping clinostat rotation during irradiation, which was required in all other previous experiments. Using this system, human fibroblasts were exposed to X-rays or carbon ions under the simulated µG condition, and chromosomes were collected with the premature chromosome condensation method in the first mitosis. Chromosome aberrations (CA) were quantified by the 3-color fluorescent in situ hybridization (FISH) method. Cells exposed to irradiation under the simulated µG condition showed a higher frequency of both simple and complex types of CA compared to cells irradiated under the static condition by either X-rays or carbon ions.


Carbon Radioisotopes/adverse effects , Chromosome Aberrations/radiation effects , Fibroblasts/radiation effects , Weightlessness Simulation/adverse effects , X-Rays/adverse effects , Cell Survival/radiation effects , Cells, Cultured , Chromosomes, Human, Pair 1/radiation effects , Chromosomes, Human, Pair 2/radiation effects , Chromosomes, Human, Pair 4/radiation effects , G2 Phase Cell Cycle Checkpoints/radiation effects , Humans , In Situ Hybridization, Fluorescence
14.
Front Cardiovasc Med ; 5: 83, 2018.
Article En | MEDLINE | ID: mdl-30038908

Radiation Therapy (RT) has been critical in cancer treatment regimens to date. However, it has been shown that ionizing radiation is also associated with increased risk of damage to healthy tissues. At high radiation doses, varied effects including inactivation of cells in treated tissue and associated functional impairment are seen. These range from direct damage to the heart; particularly, diffuse fibrosis of the pericardium and myocardium, adhesion of the pericardium, injury to the blood vessels and stenosis. Cardiac damage is mostly a late responding end-point, occurring anywhere between 1 and 10 years after radiation procedures. Cardiovascular disease following radiotherapy was more common with radiation treatments used before the late 1980s. Modern RT regimens with more focused radiation beams, allow tumors to be targeted more precisely and shield the heart and other healthy tissues for minimizing the radiation damage to normal cells. In this review, we discuss radiation therapeutic doses used and post-radiation damage to the heart muscle from published studies. We also emphasize the need for early detection of cardiotoxicity and the need for more cardio-protection approaches where feasible.

15.
PLoS One ; 11(4): e0153998, 2016.
Article En | MEDLINE | ID: mdl-27111667

The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictions of the charge number and energy dependence of RBE's using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE's are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (<10) are found for simple exchanges using a linear dose response model, however in the non-targeted effects model for fibroblast cells large RBE values (>10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE's against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Comparisons of the resulting model parameters to those used in the NASA radiation quality factor function are discussed.


Chromosomes , Cosmic Radiation , Neoplasms/physiopathology , Dose-Response Relationship, Radiation , Humans , Neoplasms/genetics , Relative Biological Effectiveness
16.
Adv Space Res ; 33(12): 2215-8, 2004.
Article En | MEDLINE | ID: mdl-15791734

During the period from March 13, 2002 to mid-September, 2002, six solar particle events (SPE) were observed by the MARIE instrument onboard the Odyssey Spacecraft in Martian Orbit. These events were observed also by the GOES 8 satellite in Earth orbit, and thus represent the first time that the same SPE have been observed at these separate locations. The characteristics of these SPE are examined, given that the active regions of the solar disc from which the event originated can usually be identified. The dose rates at Martian orbit are calculated, both for the galactic and solar components of the ionizing particle radiation environment. The dose rates due to galactic cosmic rays (GCR) agree well with the HZETRN model calculations.


Mars , Models, Theoretical , Radiation Monitoring/instrumentation , Solar Activity , Space Flight/instrumentation , Spacecraft/instrumentation , Earth, Planet , Radiation Dosage
17.
J Radiat Res ; 43 Suppl: S35-9, 2002 Dec.
Article En | MEDLINE | ID: mdl-12793727

Model calculations of the particle flux on the surface of Mars due to the Galactic Cosmic Rays (GCR) can provide guidance on radiobiological research and shielding design studies in support of Mars exploration science objectives. Particle flux calculations for protons, helium ions, and heavy ions are reported for solar minimum and solar maximum conditions. These flux calculations include a description of the altitude variations on the Martian surface using the data obtained by the Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument. These particle flux calculations are then used to estimate the average particle hits per cell at various organ depths of a human body in a conceptual shelter vehicle. The estimated particle hits by protons for an average location at skin depth on the Martian surface are about 10 to 100 particle-hits/cell/year and the particle hits by heavy ions are estimated to be 0.001 to 0.01 particle-hits/cell/year.


Elementary Particle Interactions , Mars , Models, Theoretical , Cosmic Radiation , Humans , Radiation Dosage
18.
J Radiat Res ; 43 Suppl: S119-24, 2002 Dec.
Article En | MEDLINE | ID: mdl-12793743

For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.


Cosmic Radiation , Elementary Particle Interactions , Mars , Altitude , Humans , Models, Theoretical , Radiation Protection , Solar Activity , Spacecraft
...