Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Chron Obstruct Pulmon Dis ; 19: 1141-1151, 2024.
Article in English | MEDLINE | ID: mdl-38817823

ABSTRACT

Background: This study sought to explore the underlying mechanism of miR-21 mediated apoptosis and inflammation in chronic obstructive pulmonary disease (COPD) induced by cigarette smoke (CS). Methods: We detected levels and PTEN/Akt/NF-κB axis protein levels in peripheral lung tissues of COPD patients and CS-exposed mice and HBE cells. Western blotting assay was used to determine the expression of cleaved caspase-3. IL-6 and IL-8 protein was detected in cell supernatant from cells by ELISA. HBE cells were transfected with a miR-21 inhibitor, and co-culture with A549. Results: Increased miR-21 expression, reduced PTEN expression and following activation of Akt in in peripheral lung tissues of COPD patients and CS-exposed mice and HBE cells. Inhibition of miR-21 showed enhanced PTEN levels and reduced the expression of phosphorylated form of Akt and NF-κB. Decreased expression of cleaved caspase-3, IL-6 and IL-8 in A549 cells co cultured with HBE cells transfected with miR-21 inhibitor compared with transfected with miR-21 control inhibitor. Conclusion: MiR-21 contributes to COPD pathogenesis by modulating apoptosis and inflammation through the PTEN/Akt/NF-κB pathway. Targeting miR-21 may increase PTEN expression and inhibit Akt/NF-κB pathway, offering potential diagnostic and therapeutic value in COPD management.


Subject(s)
Apoptosis , Disease Models, Animal , Lung , MicroRNAs , NF-kappa B , PTEN Phosphohydrolase , Proto-Oncogene Proteins c-akt , Pulmonary Disease, Chronic Obstructive , Signal Transduction , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , MicroRNAs/metabolism , MicroRNAs/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Humans , Proto-Oncogene Proteins c-akt/metabolism , Animals , NF-kappa B/metabolism , A549 Cells , Lung/pathology , Lung/metabolism , Male , Middle Aged , Female , Mice, Inbred C57BL , Interleukin-8/metabolism , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Phosphorylation , Cigarette Smoking/adverse effects , Case-Control Studies , Aged
2.
J Thorac Dis ; 15(12): 6928-6945, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38249902

ABSTRACT

Background: Lung cancer is the leading cause of morbidity and mortality among all cancer types, with lung adenocarcinoma (LUAD) being the most prevalent subtype. DNA damage repair (DDR)-related genes are closely associated with cancer progression and treatment, with emerging evidence highlighting their correlation with tumor development. However, the relationship between LUAD prognosis and DDR-related genes remains unclear. Methods: RNA sequencing (RNA-seq) data and clinical information were obtained from The Cancer Genome Atlas (TCGA) database. The GSE31210 dataset, utilized for external validation, was retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed DDR genes were identified, and a DDR-related prognostic model was established and validated using Kaplan-Meier (KM) survival analysis, time-dependent receiver operating characteristic (ROC) curves, gene set enrichment analysis (GSEA), tumor mutational burden (TMB) analysis, and immune cell infiltration. A P value of less than 0.05 was considered statistically significant. Results: A total of 514 patients with LUAD from TCGA database were divided into distinct subtypes to characterize the diversity within the DDR pathway. DDR-activated and DDR-suppressed subgroups showed distinct clinical characteristics, molecular characteristics, and immune profiles. Nine genes were identified as hub DDR-related genes, including CASP14, DKK1, ECT2, FLNC, HMMR, IGFBP1, KRT6A, TYMS, and FCER2. By using the expression levels of these selected genes, the corresponding risk scores for each sample was predicted. In the training group, KM survival analysis revealed that the high-risk group exhibited significantly diminished overall survival (OS) [hazard ratio (HR) =3.341, P=1.38e-08]. The corresponding area under the curve (AUC) values for the 1-year follow-up periods was 0.767, respectively. Upon validation in the external cohort, patients with higher risk scores manifested significantly reduced OS (HR =2.372, P=1.87e-03). The AUC values of the ROC curves for the 1-year OS in the validation cohort was 0.87, respectively. Moreover, advanced DDR risk score was correlated with increased TMB scores, a heightened frequency of TP53 mutations, an increased abundance of cancer-testicular antigens (CTAs), and a lower tumor immune dysfunction and exclusion (TIDE) score in patients with LUAD (P<0.05). Conclusions: A nine-gene risk signature associated with DDR in LUAD was effectively developed, demonstrating its potential as a robust and reliable classification tool for clinical practice. This model exhibited the capability to accurately predict the prognosis and survival outcomes of LUAD patients.

3.
Int J Chron Obstruct Pulmon Dis ; 16: 3347-3362, 2021.
Article in English | MEDLINE | ID: mdl-34934311

ABSTRACT

BACKGROUND: Nuclear factor E2-related factor 2 (Nrf2) is involved in oxidative stress and lung inflammation and regulates the etiology of chronic obstructive pulmonary disease (COPD). Ferroptosis is characterized by the accumulation of lipid reactive oxygen species (ROS) via ferrous ion-dependent Fenton reactions and is involved in COPD. However, the role of Nrf2 in ferroptosis and its epigenetic regulation in the pathogenesis of COPD remain unclear. METHODS: Ferroptosis was detected by 4-HNE, MDA, C11BODIPY, DCFH-DA, Peals' staining and CCK-8 assays. qPCR and Western blotting were performed to examine the Nrf2 levels in peripheral lung tissues, primary epithelial cells collected from patients with COPD and subjects with normal pulmonary function (never-smoker [control-NS]; smoker [control-S]), and cigarette smoke extract (CSE)-treated human bronchial epithelial (HBE) cells. ELISA was used to quantify IL-8 and IL-1ß levels. Methylation of the Nrf2 promoter was analyzed by bisulfite sequencing and pyrosequencing. RESULTS: Ferroptosis was involved in COPD and glutathione peroxidase 4 (GPX4) expression was downregulated in the COPD group. Reactive oxygen species (ROS), lipid peroxides and MDA were increased, but GPX4 and SOD were exhausted in CSE-treated HBE cells. The production of IL-1ß and IL-8 was promoted in HBE cells in response to CSE but could be reversed by the ferroptosis inhibitor fer-1. The Nrf2 level was significantly decreased in the COPD group compared with the control-S and control-NS groups. Increased Nrf2 expression enhanced GPX4 and SOD levels and inhibited ferroptosis and proinflammatory cytokines in the supernatant. Inhibition of GPX4 reversed the effect of Nrf2 overexpression and promoted ferroptosis. Two specific CpG sites within the Nrf2 promoter were hypermethylated in the COPD group. Similarly, CSE-treated HBE cells exhibited hypermethylation of the Nrf2 gene. CONCLUSION: Nrf2 expression was downregulated in the lungs of COPD patients due to hypermethylation of the Nrf2 promoter, inhibiting Nrf2/GPX4 and ferroptosis, which is related to the initiation and progression of COPD. Targeting Nrf2/GPX4 may inhibit ferroptosis, which could provide strategies to delay or treat COPD.


Subject(s)
Ferroptosis , NF-E2-Related Factor 2/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Epigenesis, Genetic , Humans , NF-E2-Related Factor 2/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology
4.
Int J Gen Med ; 14: 571-580, 2021.
Article in English | MEDLINE | ID: mdl-33654424

ABSTRACT

PURPOSE: Exhaled nitric oxide has been used as a marker of airway inflammation. The NO concentration in the central and peripheral airway/alveolar can be measured by a slow and fast exhalation flow rate to evaluate inflammation in different divisions within the respiratory tract. We hypothesized that FeNO200 (exhaled NO at a flow rate of 200mL/s) could be used as an evaluation tool for peripheral airway/alveolar inflammation and corticosteroid therapy in chronic obstructive pulmonary disease (COPD) patients. METHODS: We recruited 171 subjects into the study: 73 healthy controls, 59 stable COPD patients, and 39 acute exacerbations of COPD (AECOPD) patients. Exhaled nitric oxide (FeNO50 (exhaled NO at a flow rate of 50mL/s)), FeNO200 and CaNO (peripheral concentration of NO/alveolar NO) and clinical variables including pulmonary function, COPD Assessment Test (CAT), C-reactive protein concentration (CRP) and circulating eosinophil count were measured among the recruited participants. FeNO50, FeNO200 and CaNO were repeatedly evaluated in 39 AECOPD patients after corticosteroid treatment. RESULTS: FeNO200 was significantly higher in stable COPD and AECOPD patients than in healthy controls. Nevertheless, CaNO could not differentiate COPD from healthy controls. No correlation was found between circulating eosinophil counts or FEV1 and exhaled nitric oxide (FeNO50, FeNO200, CaNO) in COPD patients. For AECOPD patients, 64% of patients had eosinophil counts >100 cells/µL; 59% of patients had FeNO200 >10 ppb; only 31% of patients had FeNO50 > 25 ppb. Among AECOPD patients, the high FeNO50 and FeNO200 groups' levels were significantly lower than their baseline levels, and significant improvements in CAT were seen in the two groups after corticosteroid treatment. These implied a good corticosteroid response in AECOPD patients with FeNO200>10ppb. CONCLUSION: FeNO200 is a straightforward and feasible method to evaluate the peripheral NO concentration in COPD. FeNO200 can be a type 2 inflammation biomarker and a useful tool for predicting corticosteroid therapy in COPD.

5.
Eur J Clin Invest ; 51(4): e13425, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33037614

ABSTRACT

BACKGROUND: Myofibroblast differentiation and extracellular matrix (ECM) deposition are observed in chronic obstructive pulmonary disease (COPD). However, the mechanisms of regulation of myofibroblast differentiation remain unclear. MATERIALS AND METHODS: We detected let-7 levels in peripheral lung tissues, serum and primary bronchial epithelial cells of COPD patients and cigarette smoke (CS)-exposed mice. IL-6 mRNA was explored in lung tissues of COPD patients and CS-exposed mice. IL-6 protein was detected in cell supernatant from primary epithelial cells by ELISA. We confirmed the regulatory effect of let-7 on IL-6 by luciferase reporter assay. Western blotting assay was used to determine the expression of α-SMA, E-cadherin and collagen I. In vitro, cell study was performed to demonstrate the role of let-7 in myofibroblast differentiation and ECM deposition. RESULTS: Low expression of let-7 was observed in COPD patients, CS-exposed mice and CS extract (CSE)-treated human bronchial epithelial (HBE) cells. Increased IL-6 was found in COPD patients, CS-exposed mice and CSE-treated HBE cells. Let-7 targets and silences IL-6 protein coding genes through binding to 3' untranslated region (UTR) of IL-6. Normal or CSE-treated HBE cells were co-cultured with human embryonic lung fibroblasts (MRC-5 cells). Reduction of let-7 in HBE cells caused myofibroblast differentiation and ECM deposition, while increase of let-7 mimics decreased myofibroblast differentiation phenotype and ECM deposition. CONCLUSION: We demonstrate that CS reduced let-7 expression in COPD and, further, identify let-7 as a regulator of myofibroblast differentiation through the regulation of IL-6, which has potential value for diagnosis and treatment of COPD.


Subject(s)
Airway Remodeling/genetics , Epithelial Cells/metabolism , Interleukin-6/metabolism , Lung/metabolism , MicroRNAs/genetics , Myofibroblasts/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Actins/metabolism , Adult , Aged , Animals , Cadherins/metabolism , Cell Differentiation/genetics , Cigarette Smoking , Collagen Type I/metabolism , Extracellular Matrix/metabolism , Female , Humans , In Vitro Techniques , Male , Mice , Middle Aged , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , RNA, Messenger/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Smoke , Tobacco Products
6.
J Int Med Res ; 48(5): 300060520923522, 2020 May.
Article in English | MEDLINE | ID: mdl-32436415

ABSTRACT

OBJECTIVE: Bleomycin is an important chemotherapeutic drug that activates premature senescence to decrease the tumorigenic process. We aimed to investigate the role of phosphatase and tensin homolog deleted on chromosome ten (PTEN) in bleomycin-induced premature senescence in lung cancer cells. METHODS: Human lung cancer A549 cells were incubated in the presence of different concentrations of bleomycin for 5 days. A lentivirus vector was used to silence the PTEN gene, followed by stimulation with bleomycin (1 µg/mL). Changes were evaluated by senescence-associated ß-galactosidase staining, reverse transcription-polymerase chain reaction, and western blot. RESULTS: Treatment with bleomycin induced premature senescence. PTEN expression was decreased and key downstream molecules in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway were gradually activated following bleomycin treatment. Silencing PTEN reduced autophagy and accelerated senescence of A549 cells. Autophagy levels were also increased and senescence markers were reduced after inhibiting mTOR. CONCLUSIONS: Downregulation of PTEN mediates bleomycin-induced premature senescence in lung cancer cells by suppressing autophagy via the PI3K/Akt/mTOR pathway. These findings provide new insights into the potential role of PTEN as a molecular target for cancer chemotherapy.


Subject(s)
Autophagy/drug effects , Bleomycin/pharmacology , Cellular Senescence/drug effects , Lung Neoplasms/drug therapy , PTEN Phosphohydrolase/metabolism , A549 Cells , Bleomycin/therapeutic use , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
7.
Biomed Res Int ; 2019: 2121357, 2019.
Article in English | MEDLINE | ID: mdl-31080811

ABSTRACT

BACKGROUND: cIAP2 is involved in necroptosis as a key upstream regulation factor. We aimed to investigate the role of cIAP2 in ARDS/ALI induced by H7N9 virus through regulating the RIPK1/3 necroptosis pathway. METHODS: Lung tissues of 11 patients who died from ARDS-complicated H7N9 infection between 2013 and 2016 were obtained as the H7N9-ARDS group. Lung tissues near benign lung nodules were acquired as the control group. Histological changes were evaluated by H&E staining. Protein levels of cIAP2, RIPK1, RIPK3, p-RIPK3, MLKL, and p-MLKL in the lung tissues were detected by Western Blot. The mRNA levels of cIAP2, RIPK1, and RIPK3 were detected by real-time PCR. RESULTS: H7N9 virus infection had a high mortality, with ARDS being the leading cause of death. The protein level of cIAP2 in the experimental group was lower than that in the control group (P<0.05). However, the experimental group showed higher RIPK1, RIPK3, and p-RIPK3 protein levels than the control group (P<0.05), as well as the expression level of MLKL and p-MLKL protein, which is a key downstream protein in necroptosis (P<0.05). CONCLUSION: In tissues from patients with fatal H7N9, downregulation of cIAP2 and induction of necroptosis was observed. We could speculate that necroptosis of the pulmonary epithelium is associated with severe H7N9 infection leading to ARDS. Thus, necroptosis inhibition may be a novel therapy for H7N9 influenza virus.


Subject(s)
Baculoviral IAP Repeat-Containing 3 Protein/metabolism , Influenza A Virus, H7N9 Subtype/pathogenicity , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/virology , Adult , Aged , Animals , Cells, Cultured , Down-Regulation/physiology , Female , Humans , Lung/metabolism , Lung/virology , Male , Mice , Middle Aged , Necrosis/metabolism , Necrosis/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...