Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 13(1): 12479, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528144

ABSTRACT

The impact of deep space cosmic rays on food resources is as important as the risks of cosmic rays to the human body. This study demonstrates the potential for neutrons as secondary radiation in deep space spacecraft to cause meat activation and oxidative modification of proteins and lipids. We conducted a series of experiments such as the neutron irradiation experiment, the radioactivation analysis and the biochemical analysis. Neutrons with energies from 1 to 5 MeV with doses from 0.01 Gy to 4 Gy were irradiated by the RIKEN accelerated-driven neutron source (RANS). Radioactive nuclei, 24Na, 42K, and 38Cl, were detected in the neutron-irradiated meat. The modification products of the proteins by oxidative nitration, 6-nitrotryptophan (6NO2Trp), and by a lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE), were detected in several proteins with neutron dose dependent. The proteome analysis showed that many oxidative modifications were detected in actin and myosin which are major proteins of myofibrils. This study is of crucial importance not only as risk factors for human space exploration, but also as fundamental effects of radiation on the components of the human body.


Subject(s)
Cosmic Radiation , Radioactivity , Space Flight , Humans , Spacecraft , Neutrons , Cosmic Radiation/adverse effects , Radiation Dosage
2.
Biochem Biophys Res Commun ; 528(1): 227-233, 2020 07 12.
Article in English | MEDLINE | ID: mdl-32475643

ABSTRACT

We investigated the novel molecular mechanisms of the antitumor effect of berberine. In this study, two different human cell lines (breast cancer MCF7 cells and non-tumorigenic epithelial MCF12A cells) were treated with various concentrations of berberine. Treatment with 1 and 10 µM berberine inhibited proliferation with G0/G1 cell cycle arrest in both cell lines, and treatment with 100 µM berberine triggered a marked level of cell death in MCF7 cells but not in MCF12A cells. Berberine increased the level of p53 protein and of its target p21 both time- and dose-dependently in MCF7 cells. At any concentration of berberine, immediate uptake (within 15 min) followed by predominantly mitochondrial accumulation were observed by confocal microscopy in both cell lines. At high concentrations (10 or 100 µM), accumulation in the nucleolus became prominent after the transition to the nucleoplasm, especially remarkable in MCF7 cells. Therefore, we evaluated the possibility of berberine-induced nucleolar stress and observed the disappearance of ribosomal protein (RP)L5 from the nucleolus and accumulation of p53 protein in the nucleus after treatment with 10 or 100 µM berberine in MCF7 cells. We also detected the accumulation of RPL5 and RPL11 in the nucleoplasm fraction where they bind to Mdm2. Moreover, downregulation of RPL5 inhibited berberine-driven induction of p53 and p21 and cell death in MCF7 cells. Whereas, in MCF12A cells, down-regulation of RPL5 had little effect on the growth inhibitory effect of high concentration of berberine. These results indicated that cell growth inhibition and cell death induced by higher doses (>10 µM) of berberine in MCF7 cells were due to the upregulation of p53 under the nucleolar stress response caused by a significant accumulation of berberine in the nucleoli.


Subject(s)
Berberine/pharmacology , Breast Neoplasms/pathology , Cell Nucleolus/metabolism , Stress, Physiological , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Nucleolus/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Fluorescence , Humans , Ribosomal Proteins/metabolism , Stress, Physiological/drug effects , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...