Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 21080, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36473951

ABSTRACT

Iron ores are principal input materials for iron and steel-making industries. Quality of iron ores is one of the critical parameters for formation of environmental pollutants related to the steel-making process. Dioxins are identified as one of the most toxic pollutants emitted during ironmaking, specifically during the sintering process. This study applied four types of iron ores and analyzed their moisture, density, particle size distribution and element concentrations to investigate their effect on the dioxin formation during sintering. Each type of iron ore was processed in a sinter pot grate. During each processing route, exhausted dust and generated sinter products were collected and subjected to PCDD/F and PCB analysis. Statistical analysis was applied to assess correlations between properties of iron ores and exhausted dioxin emissions, identifying key contributors to dioxin formation during sintering process. Results showed that Fe in iron ores was positively and significantly related to PCB 114 formation in dust and confirmed its co-catalytic effect on dioxin formation. Concentrations of Al, Ti and Cl in iron ores greatly increased PCDD/F and PCB emissions in the sintered products compared to dioxins in dust samples. The S levels and density of iron ores were highly related to the increasing PCDD/F and PCB emissions in both sinter and dust samples. By contrast, concentrations of Si in iron ores played a significant role in decreasing PCDD/F and PCB emissions in both sinter and dust samples. This study also confirmed the optimum size (< 1 mm-2.59 mm) for iron ores, which helps reduce dioxin emissions without affecting the quality of iron and steel-making products.

2.
PLoS One ; 14(10): e0224328, 2019.
Article in English | MEDLINE | ID: mdl-31652300

ABSTRACT

Industrial sources, including iron ore sintering, municipal waste incineration and non-ferrous metal processing have been prominent emitters of dioxins to the environment. With the expanding industrial sectors, many international conventions were established in order to reduce the emission of dioxins in the past two decades. The Stockholm convention, a global monitoring treaty, entered into force in 2004 with the aim to promote development of strategies to reduce or eliminate dioxin emissions. According to the convention, parties are required to develop national inventory databases to report emission levels and develop a national implementation plan (NIP) to reduce further dioxin emissions. In order to understand the trend of dioxin emissions since 1990s this study provides a comparative assessment of dioxin emissions from different industrial sources by deriving emission data from the national inventory databases of Australia, Canada and the 28 European countries (EU-28). According to the data collected, iron and steel production and electricity generation were the highest emitters of dioxins in 2017 for Europe, Canada and Australia, when compared to other stationary industrial sources. The change in the trend of dioxin emissions from the iron and steel industry and the public electricity sector was also assessed. The emission of dioxins during 1990-2017 from both iron and steel production and electricity generation revealed a relative decreasing trend, except for Spain and Italy who showed higher level of emissions from iron and steel production in 2017. Furthermore, comparing emission data for metal production revealed that the blast furnace process was the prominent emitter of dioxins comparing to electric arc furnace process. Further investigation was performed to compare the amount of dioxin emitted from three different fuel types, black coal, brown coal and natural gas, used for electricity generation in Australia. The study showed that dioxin emissions from brown coal were higher than black coal for the last two years, while power production from natural gas emits the lowest amounts of dioxins to the environment.


Subject(s)
Databases, Factual , Dioxins/analysis , Environmental Monitoring/statistics & numerical data , Environmental Pollutants/analysis , European Union/statistics & numerical data , Industrial Waste/analysis , Australia , Canada , Electric Power Supplies , Iron , Steel
SELECTION OF CITATIONS
SEARCH DETAIL