Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Heliyon ; 9(3): e13985, 2023 Mar.
Article En | MEDLINE | ID: mdl-36915476

Background: NAFLD progression, from steatosis to inflammation and fibrosis, results from an interplay of intra- and extrahepatic mechanisms. Disease drivers likely include signals from white adipose tissue (WAT) and gut. However, the temporal dynamics of disease development remain poorly understood. Methods: High-fat-diet (HFD)-fed Ldlr-/-.Leiden mice were compared to chow-fed controls. At t = 0, 8, 16, 28 and 38w mice were euthanized, and liver, WAT depots and gut were analyzed biochemically, histologically and by lipidomics and transcriptomics together with circulating factors to investigate the sequence of pathogenic events and organ cross-talk during NAFLD development. Results: HFD-induced obesity was associated with an increase in visceral fat, plasma lipids and hyperinsulinemia at t = 8w, along with increased liver steatosis and circulating liver damage biomarkers. In parallel, upstream regulator analysis predicted that lipid catabolism regulators were deactivated and lipid synthesis regulators were activated. Subsequently, hepatocyte hypertrophy, oxidative stress and hepatic inflammation developed. Hepatic collagen accumulated from t = 16 w and became pronounced at t = 28-38 w. Epididymal WAT was maximally hypertrophic from t = 8 w, which coincided with inflammation development. Mesenteric and subcutaneous WAT hypertrophy developed slower and did not appear to reach a maximum, with minimal inflammation. In gut, HFD significantly increased permeability, induced a shift in microbiota composition from t = 8 w and changed circulating gut-derived metabolites. Conclusion: HFD-fed Ldlr-/-.Leiden mice develop obesity, dyslipidemia and insulin resistance, essentially as observed in obese NAFLD patients, underlining their translational value. We demonstrate that marked epididymal-WAT inflammation, and gut permeability and dysbiosis precede the development of NAFLD stressing the importance of a multiple-organ approach in the prevention and treatment of NAFLD.

2.
Front Nutr ; 9: 904740, 2022.
Article En | MEDLINE | ID: mdl-35782914

Non-alcoholic fatty liver disease (NAFLD) is a complex multifactorial disorder that is associated with gut dysbiosis, enhanced gut permeability, adiposity and insulin resistance. Prebiotics such as human milk oligosaccharide 2'-fucosyllactose are thought to primarily improve gut health and it is uncertain whether they would affect more distant organs. This study investigates whether 2'-fucosyllactose can alleviate NAFLD development in manifest obesity. Obese hyperinsulinemic Ldlr-/-.Leiden mice, after an 8 week run-in on a high-fat diet (HFD), were treated with 2'-fucosyllactose by oral gavage until week 28 and compared to HFD-vehicle controls. 2'-fucosyllactose did not affect food intake, body weight, total fat mass or plasma lipids. 2'-fucosyllactose altered the fecal microbiota composition which was paralleled by a suppression of HFD-induced gut permeability at t = 12 weeks. 2'-fucosyllactose significantly attenuated the development of NAFLD by reducing microvesicular steatosis. These hepatoprotective effects were supported by upstream regulator analyses showing that 2'-fucosyllactose activated ACOX1 (involved in lipid catabolism), while deactivating SREBF1 (involved in lipogenesis). Furthermore, 2'-fucosyllactose suppressed ATF4, ATF6, ERN1, and NUPR1 all of which participate in endoplasmic reticulum stress. 2'-fucosyllactose reduced fasting insulin concentrations and HOMA-IR, which was corroborated by decreased intrahepatic diacylglycerols. In conclusion, long-term supplementation with 2'-fucosyllactose can counteract the detrimental effects of HFD on gut dysbiosis and gut permeability and attenuates the development of liver steatosis. The observed reduction in intrahepatic diacylglycerols provides a mechanistic rationale for the improvement of hyperinsulinemia and supports the use of 2'-fucosyllactose to correct dysmetabolism and insulin resistance.

3.
FASEB J ; 36(8): e22435, 2022 08.
Article En | MEDLINE | ID: mdl-35830259

Non-alcoholic steatohepatitis (NASH) is associated with a disturbed metabolism in liver, insulin resistance, and excessive accumulation of ectopic fat. Branched-chain amino acids (BCAAs) may beneficially modulate hepatic lipids, however, it remains unclear whether individual BCAAs can attenuate already established NASH and associated oxidative-inflammatory stress. After a 26 weeks run-in on fast food diet (FFD), obese Ldlr-/-.Leiden mice were treated for another 12 weeks with either valine or isoleucine (3% of FFD) and then compared to FFD controls. Valine and isoleucine did not affect obesity, dyslipidemia, gut permeability, or fecal fatty acid excretion, but significantly reduced hyperinsulinemia. Valine and isoleucine reduced ALT, CK18-M30, and liver steatosis with a particularly pronounced suppression of the microvesicular component (-61% by valine and -71% by isoleucine). Both BCAAs decreased intrahepatic diacylglycerols and 4-hydroxynonenal immunoreactivity, a marker for oxidative stress-induced lipid peroxidation. Functional genomics analysis demonstrated that valine and isoleucine affected BCAA metabolism genes, deactivated master regulators of anabolic pathways related to steatosis (e.g., SREBPF1), and activated master regulators of mitochondrial biogenesis (e.g., PPARGC1A) and lipid catabolism (e.g., ACOX1, AMPK). This correction of critical metabolic pathways on gene expression level was accompanied by a significant decrease in histological liver inflammation, and suppression of FFD-stimulated cytokine and chemokine proteins KC/CXCL1, MCP-1/CCL2, and MIP-2/CXCL2 and their pathways. In conclusion, dietary intervention with either valine or isoleucine corrected liver diacylglycerols, gene expression of multiple metabolic processes, and reduced NASH histology with profound hepatoprotective effects on oxidative stress and inflammatory proteins.


Hyperinsulinism , Non-alcoholic Fatty Liver Disease , Amino Acids, Branched-Chain/metabolism , Animals , Diglycerides/metabolism , Hyperinsulinism/metabolism , Inflammation/metabolism , Isoleucine/pharmacology , Isoleucine/therapeutic use , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Valine/pharmacology
4.
Biomedicines ; 9(12)2021 Dec 20.
Article En | MEDLINE | ID: mdl-34944770

In obesity-associated non-alcoholic steatohepatitis (NASH), persistent hepatocellular damage and inflammation are key drivers of fibrosis, which is the main determinant of NASH-associated mortality. The short-chain fatty acid butyrate can exert metabolic improvements and anti-inflammatory activities in NASH. However, its effects on NASH-associated liver fibrosis remain unclear. Putative antifibrotic effects of butyrate were studied in Ldlr-/-.Leiden mice fed an obesogenic diet (HFD) containing 2.5% (w/w) butyrate for 38 weeks and compared with a HFD-control group. Antifibrotic mechanisms of butyrate were further investigated in TGF-ß-stimulated primary human hepatic stellate cells (HSC). HFD-fed mice developed obesity, insulin resistance, increased plasma leptin levels, adipose tissue inflammation, gut permeability, dysbiosis, and NASH-associated fibrosis. Butyrate corrected hyperinsulinemia, lowered plasma leptin levels, and attenuated adipose tissue inflammation, without affecting gut permeability or microbiota composition. Butyrate lowered plasma ALT and CK-18M30 levels and attenuated hepatic steatosis and inflammation. Butyrate inhibited fibrosis development as demonstrated by decreased hepatic collagen content and Sirius-red-positive area. In TGF-ß-stimulated HSC, butyrate dose-dependently reduced collagen deposition and decreased procollagen1α1 and PAI1 protein expression. Transcriptomic analysis and subsequent pathway and upstream regulator analysis revealed deactivation of specific non-canonical TGF-ß signaling pathways Rho-like GTPases and PI3K/AKT and other important pro-fibrotic regulators (e.g., YAP/TAZ, MYC) by butyrate, providing a potential rationale for its antifibrotic effects. In conclusion, butyrate protects against obesity development, insulin resistance-associated NASH, and liver fibrosis. These antifibrotic effects are at least partly attributable to a direct effect of butyrate on collagen production in hepatic stellate cells, involving inhibition of non-canonical TGF-ß signaling pathways.

5.
Nutrients ; 13(8)2021 Aug 18.
Article En | MEDLINE | ID: mdl-34444996

The development of obesity is characterized by the metabolic overload of tissues and subsequent organ inflammation. The health effects of krill oil (KrO) on obesity-associated inflammation remain largely elusive, because long-term treatments with KrO have not been performed to date. Therefore, we examined the putative health effects of 28 weeks of 3% (w/w) KrO supplementation to an obesogenic diet (HFD) with fat derived mostly from lard. The HFD with KrO was compared to an HFD control group to evaluate the effects on fatty acid composition and associated inflammation in epididymal white adipose tissue (eWAT) and the liver during obesity development. KrO treatment increased the concentrations of EPA and DHA and associated oxylipins, including 18-HEPE, RvE2 and 14-HDHA in eWAT and the liver. Simultaneously, KrO decreased arachidonic acid concentrations and arachidonic-acid-derived oxylipins (e.g., HETEs, PGD2, PGE2, PGF2α, TXB2). In eWAT, KrO activated regulators of adipogenesis (e.g., PPARγ, CEBPα, KLF15, STAT5A), induced a shift towards smaller adipocytes and increased the total adipocyte numbers indicative for hyperplasia. KrO reduced crown-like structures in eWAT, and suppressed HFD-stimulated inflammatory pathways including TNFα and CCL2/MCP-1 signaling. The observed eWAT changes were accompanied by reduced plasma leptin and increased plasma adiponectin levels over time, and improved insulin resistance (HOMA-IR). In the liver, KrO suppressed inflammatory signaling pathways, including those controlled by IL-1ß and M-CSF, without affecting liver histology. Furthermore, KrO deactivated hepatic REL-A/p65-NF-κB signaling, consistent with increased PPARα protein expression and a trend towards an increase in IkBα. In conclusion, long-term KrO treatment increased several anti-inflammatory PUFAs and oxylipins in WAT and the liver. These changes were accompanied by beneficial effects on general metabolism and inflammatory tone at the tissue level. The stimulation of adipogenesis by KrO allows for safe fat storage and may, together with more direct PPAR-mediated anti-inflammatory mechanisms, attenuate inflammation.


Adipose Tissue/drug effects , Euphausiacea/chemistry , Liver/drug effects , Obesity/metabolism , Oils/pharmacology , Adipogenesis/drug effects , Adipose Tissue/chemistry , Animals , Biological Products/pharmacology , Fatty Acids/analysis , Fatty Acids/metabolism , Inflammation/metabolism , Liver/chemistry , Male , Mice
6.
Front Endocrinol (Lausanne) ; 12: 601160, 2021.
Article En | MEDLINE | ID: mdl-33815271

Background: Non-alcoholic fatty liver disease (NAFLD) is a complex multifactorial disorder that is characterised by dysfunctional lipid metabolism and cholesterol homeostasis, and a related chronic inflammatory response. NAFLD has become the most common cause of chronic liver disease in many countries, and its prevalence continues to rise in parallel with increasing rates of obesity. Here, we evaluated the putative NAFLD-attenuating effects of a multicomponent medicine consisting of 24 natural ingredients: Hepar compositum (HC-24). Methods: Ldlr-/-.Leiden mice were fed a high-fat diet (HFD) with a macronutrient composition and cholesterol content comparable to human diets for 24 weeks to induce obesity-associated metabolic dysfunction, including hepatic steatosis and inflammation. HC-24 or vehicle control was administered intraperitoneally 3 times/week (1.5 ml/kg) for the last 18 weeks of the study. Histological analyses of liver and adipose tissue were combined with extensive hepatic transcriptomics analysis. Transcriptomics results were further substantiated with ELISA, immunohistochemical and liver lipid analyses. Results: HFD feeding induced obesity and metabolic dysfunction including adipose tissue inflammation and increased gut permeability. In the liver, HFD-feeding resulted in a disturbance of cholesterol homeostasis and an associated inflammatory response. HC-24 did not affect body weight, metabolic risk factors, adipose tissue inflammation or gut permeability. While HC-24 did not alter total liver steatosis, there was a pronounced reduction in lobular inflammation in HC-24-treated animals, which was associated with modulation of genes and proteins involved in inflammation (e.g., neutrophil chemokine Cxcl1) and cholesterol homeostasis (i.e., predicted effect on 'cholesterol' as an upstream regulator, based on gene expression changes associated with cholesterol handling). These effects were confirmed by CXCL1 ELISA, immunohistochemical staining of neutrophils and biochemical analysis of hepatic free cholesterol content. Intrahepatic free cholesterol levels were found to correlate significantly with the number of inflammatory aggregates in the liver, thereby providing a potential rationale for the observed anti-inflammatory effects of HC-24. Conclusions: Free cholesterol accumulates in the liver of Ldlr-/-.Leiden mice under physiologically translational dietary conditions, and this is associated with the development of hepatic inflammation. The multicomponent medicine HC-24 reduces accumulation of free cholesterol and has molecular and cellular anti-inflammatory effects in the liver.


Cholesterol/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Plant Extracts/administration & dosage , Animals , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Diet, High-Fat/adverse effects , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/immunology , Liver/metabolism , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, LDL/genetics , Receptors, LDL/immunology
7.
Cells ; 9(9)2020 09 01.
Article En | MEDLINE | ID: mdl-32883049

Non-alcoholic steatohepatitis (NASH) is a fast-growing liver disorder that is associated with an increased incidence of cardiovascular disease and type 2 diabetes. Animal models adequately mimicking this condition are scarce. We herein investigate whether Ldlr-/-. Leiden mice on different high-fat diets represent a suitable NASH model. Ldlr-/-. Leiden mice were fed a healthy chow diet or fed a high-fat diet (HFD) containing lard or a fast food diet (FFD) containing milk fat. Additionally, the response to treatment with obeticholic acid (OCA) was evaluated. Both high-fat diets induced obesity, hyperlipidemia, hyperinsulinemia, and increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Mice on both diets developed progressive macro- and microvesicular steatosis, hepatic inflammation, and fibrosis, along with atherosclerosis. HFD induced more severe hyperinsulinemia, while FFD induced more severe hepatic inflammation with advanced (F3) bridging fibrosis, as well as more severe atherosclerosis. OCA treatment significantly reduced hepatic inflammation and fibrosis, and it did not affect atherosclerosis. Hepatic transcriptome analysis was compared with human NASH and illustrated similarity. The present study defines a translational model of NASH with progressive liver fibrosis and simultaneous atherosclerosis development. By adaptation of the fat content of the diet, either insulin resistance (HFD) or hepatic inflammation and fibrosis (FFD) can be aggravated.


Atherosclerosis/blood , Atherosclerosis/etiology , Diet, High-Fat/adverse effects , Disease Models, Animal , Fast Foods/adverse effects , Liver Cirrhosis/blood , Liver Cirrhosis/etiology , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/etiology , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/therapeutic use , Hyperinsulinism/drug therapy , Hyperinsulinism/etiology , Hyperlipidemias/drug therapy , Hyperlipidemias/etiology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Obesity/blood , Obesity/drug therapy , Obesity/etiology , Receptors, LDL/genetics , Transcriptome , Treatment Outcome
8.
Front Nutr ; 6: 129, 2019.
Article En | MEDLINE | ID: mdl-31508422

Obesity, type 2 diabetes, and other metabolic disorders have a large impact on global health, especially in Western countries. An important hallmark of metabolic disorders is chronic low-grade inflammation. A key player in chronic low-grade inflammation is dysmetabolism, which is defined as the inability to keep homeostasis resulting in loss of lipid control, oxidative stress, inflammation, and insulin resistance. Although often not yet detectable in the circulation, chronic low-grade inflammation can be present in one or multiple organs. The response to a metabolic challenge containing lipids may magnify dysfunctionalities at the tissue level, causing an overflow of inflammatory markers into the circulation and hence allow detection of early low-grade inflammation. Here, we summarize the evidence of successful application of metabolic challenge tests in type 2 diabetes, metabolic syndrome, obesity, and unhealthy aging. We also review how metabolic challenge tests have been successfully applied to evaluate nutritional intervention effects, including an "anti-inflammatory" mixture, dark chocolate, whole grain wheat and overfeeding. Additionally, we elaborate on future strategies to (re)gain inflammatory flexibility. Through epigenetic and metabolic regulation, the inflammatory response may be trained by regular mild and metabolic triggers, which can be understood from the perspective of trained immunity, hormesis and pro-resolution. New strategies to optimize dynamics of inflammation may become available.

9.
Int J Mol Sci ; 20(18)2019 Sep 05.
Article En | MEDLINE | ID: mdl-31491949

Obesity characterized by adiposity and ectopic fat accumulation is associated with the development of non-alcoholic fatty liver disease (NAFLD). Treatments that stimulate lipid utilization may prevent the development of obesity and comorbidities. This study evaluated the potential anti-obesogenic hepatoprotective effects of combined treatment with L-carnitine and nicotinamide riboside, i.e., components that can enhance fatty acid transfer across the inner mitochondrial membrane and increase nicotinamide adenine nucleotide (NAD+) levels, which are necessary for ß-oxidation and the TCA cycle, respectively. Ldlr -/-.Leiden mice were treated with high-fat diet (HFD) supplemented with L-carnitine (LC; 0.4% w/w), nicotinamide riboside (NR; 0.3% w/w) or both (COMBI) for 21 weeks. L-carnitine plasma levels were reduced by HFD and normalized by LC. NR supplementation raised its plasma metabolite levels demonstrating effective delivery. Although food intake and ambulatory activity were comparable in all groups, COMBI treatment significantly attenuated HFD-induced body weight gain, fat mass gain (-17%) and hepatic steatosis (-22%). Also, NR and COMBI reduced hepatic 4-hydroxynonenal adducts. Upstream-regulator gene analysis demonstrated that COMBI reversed detrimental effects of HFD on liver metabolism pathways and associated regulators, e.g., ACOX, SCAP, SREBF, PPARGC1B, and INSR. Combination treatment with LC and NR exerts protective effects on metabolic pathways and constitutes a new approach to attenuate HFD-induced obesity and NAFLD.


Carnitine/pharmacology , Fatty Liver/metabolism , Niacinamide/analogs & derivatives , Obesity/metabolism , Animals , Biomarkers , Disease Models, Animal , Energy Metabolism/drug effects , Fatty Liver/drug therapy , Fatty Liver/genetics , Gene Expression Regulation , Lipid Metabolism/drug effects , Male , Mice , Mice, Knockout , Niacinamide/pharmacology , Obesity/drug therapy , Obesity/genetics , Oxidative Stress , Pyridinium Compounds , Signal Transduction
10.
PLoS One ; 14(6): e0218459, 2019.
Article En | MEDLINE | ID: mdl-31233523

Interruption of bile acid recirculation through inhibition of the apical sodium-dependent bile acid transporter (ASBT) is a promising strategy to alleviate hepatic cholesterol accumulation in non-alcoholic steatohepatitis (NASH), and improve the metabolic aspects of the disease. Potential disease-attenuating effects of the ASBT inhibitor volixibat (5, 15, and 30 mg/kg) were investigated in high-fat diet (HFD)-fed Ldlr-/-.Leiden mice over 24 weeks. Plasma and fecal bile acid levels, plasma insulin, lipids, and liver enzymes were monitored. Final analyses included liver histology, intrahepatic lipids, mesenteric white adipose tissue mass, and liver gene profiling. Consistent with its mechanism of action, volixibat significantly increased the total amount of bile acid in feces. At the highest dose, volixibat significantly attenuated the HFD-induced increase in hepatocyte hypertrophy, hepatic triglyceride and cholesteryl ester levels, and mesenteric white adipose tissue deposition. Non-alcoholic fatty liver disease activity score (NAS) was significantly lower in volixibat-treated mice than in the HFD controls. Gene profiling showed that volixibat reversed the inhibitory effect of the HFD on metabolic master regulators, including peroxisome proliferator-activated receptor-γ coactivator-1ß, insulin receptor, and sterol regulatory element-binding transcription factor 2. Volixibat may have beneficial effects on physiological and metabolic aspects of NASH pathophysiology.


Benzothiepins/pharmacology , Energy Metabolism/drug effects , Glycosides/pharmacology , Lipid Regulating Agents/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors , Symporters/antagonists & inhibitors , Adipose Tissue, Beige/metabolism , Animals , Bile Acids and Salts/metabolism , Biomarkers , Disease Models, Animal , Lipid Metabolism/drug effects , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Risk Factors
11.
Int J Mol Sci ; 20(1)2018 Dec 20.
Article En | MEDLINE | ID: mdl-30577415

Development of non-alcoholic fatty liver disease (NAFLD) is linked to obesity, adipose tissue inflammation, and gut dysfunction, all of which depend on diet. So far, studies have mainly focused on diet-related fecal microbiota changes, but other compartments may be more informative on host health. We present a first systematic analysis of microbiota changes in the ileum and colon using multiple diets and investigating both fecal and mucosal samples. Ldlr-/-.Leiden mice received one of three different energy-dense (ED)-diets (n = 15/group) for 15 weeks. All of the ED diets induced obesity and metabolic risk factors, altered short-chain fatty acids (SCFA), and increased gut permeability and NAFLD to various extents. ED diets reduced the diversity of high-abundant bacteria and increased the diversity of low-abundant bacteria in all of the gut compartments. The ED groups showed highly variable, partially overlapping microbiota compositions that differed significantly from chow. Correlation analyses demonstrated that (1) specific groups of bacteria correlate with metabolic risk factors, organ dysfunction, and NAFLD endpoints, (2) colon mucosa had greater predictive value than other compartments, (3) correlating bacteria differed per compartment, and (4) some bacteria correlated with plasma SCFA levels. In conclusion, this comprehensive microbiota analysis demonstrates correlations between the microbiota and dysfunctions of gut, adipose tissue, and liver, independent of a specific disease-inducing diet.


Adipose Tissue/metabolism , Gastrointestinal Microbiome , Intestinal Mucosa/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications , Obesity/etiology , Animals , Bacteria , Biodiversity , Cell Membrane Permeability , Fatty Acids, Volatile/metabolism , Feces/microbiology , Liver Function Tests , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism
12.
Hepatol Commun ; 2(12): 1513-1532, 2018 Dec.
Article En | MEDLINE | ID: mdl-30556039

Concerns have been raised about whether preclinical models sufficiently mimic molecular disease processes observed in nonalcoholic steatohepatitis (NASH) patients, bringing into question their translational value in studies of therapeutic interventions in the process of NASH/fibrosis. We investigated the representation of molecular disease patterns characteristic for human NASH in high-fat diet (HFD)-fed Ldlr-/-.Leiden mice and studied the effects of obeticholic acid (OCA) on these disease profiles. Multiplatform serum metabolomic profiles and genome-wide liver transcriptome from HFD-fed Ldlr-/-.Leiden mice were compared with those of NASH patients. Mice were profiled at the stage of mild (24 weeks HFD) and severe (34 weeks HFD) fibrosis, and after OCA intervention (24-34 weeks; 10 mg/kg/day). Effects of OCA were analyzed histologically, biochemically, by immunohistochemistry, using deuterated water technology (de novo collagen formation), and by its effect on the human-based transcriptomics and metabolomics signatures. The transcriptomics and metabolomics profile of Ldlr-/-.Leiden mice largely reflected the molecular signature of NASH patients. OCA modulated the expression of these molecular profiles and quenched specific proinflammatory-profibrotic pathways. OCA attenuated specific facets of cellular inflammation in liver (F4/80-positive cells) and reduced crown-like structures in adipose tissue. OCA reduced de novo collagen formation and attenuated further progression of liver fibrosis, but did not reduce fibrosis below the level before intervention. Conclusion: HFD-fed Ldlr-/-.Leiden mice recapitulate molecular transcriptomic and metabolomic profiles of NASH patients, and these signatures are modulated by OCA. Intervention with OCA in developing fibrosis reduces collagen deposition and de novo synthesis but does not resolve already manifest fibrosis in the period studied. These data show that human molecular signatures can be used to evaluate the translational character of preclinical models for NASH.

13.
PLoS One ; 12(7): e0180648, 2017.
Article En | MEDLINE | ID: mdl-28678821

BACKGROUND: Obesity frequently associates with the development of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis. Chronic inflammation in white adipose tissue (WAT) seems to be an important driver of these manifestations. OBJECTIVE: This study investigated a combination of an extensively hydrolyzed casein (eHC), docosahexaenoic acid (DHA), arachidonic acid (ARA), and Lactobacillus Rhamnosus GG (LGG) (together referred to as nutritional ingredients, NI) on the development of obesity, metabolic risk factors, WAT inflammation, NAFLD and atherosclerosis in high-fat diet-fed LDLr-/-.Leiden mice, a model that mimics disease development in humans. METHODS: LDLr-/-.Leiden male mice (n = 15/group) received a high-fat diet (HFD, 45 Kcal%) for 21 weeks with or without the NI (23.7% eHC, 0.083% DHA, 0.166% ARA; all w/w and 1x109 CFU LGG gavage 3 times/week). HFD and HFD+NI diets were isocaloric. A low fat diet (LFD, 10 Kcal%) was used for reference. Body weight, food intake and metabolic risk factors were assessed over time. At week 21, tissues were analyzed for WAT inflammation (crown-like structures), NAFLD and atherosclerosis. Effects of the individual NI components were explored in a follow-up experiment (n = 7/group). RESULTS: When compared to HFD control, treatment with the NI strongly reduced body weight to levels of the LFD group, and significantly lowered (P<0.01) plasma insulin, cholesterol, triglycerides, leptin and serum amyloid A (P<0.01). NI also reduced WAT mass and inflammation. Strikingly, NI treatment significantly reduced macrovesicular steatosis, lobular inflammation and liver collagen (P<0.05), and attenuated atherosclerosis development (P<0.01). Of the individual components, the effects of eHC were most pronounced but could not explain the entire effects of the NI formulation. CONCLUSIONS: A combination of eHC, ARA, DHA and LGG attenuates obesity and associated cardiometabolic diseases (NAFLD, atherosclerosis) in LDLr-/-.Leiden mice. The observed reduction of inflammation in adipose tissue and in the liver provides a rationale for these comprehensive health effects.


Atherosclerosis/prevention & control , Caseins/administration & dosage , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/prevention & control , Receptors, LDL/physiology , Adiposity/drug effects , Animals , Caseins/pharmacology , Diet, High-Fat , Male , Mice , Receptors, LDL/genetics , Weight Gain
14.
Sci Rep ; 7(1): 2915, 2017 06 06.
Article En | MEDLINE | ID: mdl-28588299

Obesity-related albuminuria is associated with decline of kidney function and is considered a first sign of diabetic nephropathy. Suggested factors linking obesity to kidney dysfunction include low-grade inflammation, insulin resistance and adipokine dysregulation. Here, we investigated the effects of two pharmacological compounds with established anti-inflammatory properties, rosiglitazone and rosuvastatin, on kidney dysfunction during high-fat diet (HFD)-induced obesity. For this, human CRP transgenic mice were fed standard chow, a lard-based HFD, HFD+rosuvastatin or HFD+rosiglitazone for 42 weeks to study effects on insulin resistance; plasma inflammatory markers and adipokines; and renal pathology. Rosiglitazone but not rosuvastatin prevented HFD-induced albuminuria and renal fibrosis and inflammation. Also, rosiglitazone prevented HFD-induced KIM-1 expression, while levels were doubled with rosuvastatin. This was mirrored by miR-21 expression, which plays a role in fibrosis and is associated with renal dysfunction. Plasma insulin did not correlate with albuminuria. Only rosiglitazone increased circulating adiponectin concentrations. In all, HFD-induced albuminuria, and renal inflammation, injury and fibrosis is prevented by rosiglitazone but not by rosuvastatin. These beneficial effects of rosiglitazone are linked to lowered miR-21 expression but not connected with the selectively enhanced plasma adiponectin levels observed in rosiglitazone-treated animals.


C-Reactive Protein/genetics , Kidney/drug effects , Kidney/metabolism , Protective Agents/pharmacology , Rosiglitazone/pharmacology , Adipokines/blood , Adiponectin/genetics , Adiponectin/metabolism , Animals , Biomarkers , Blood Glucose , Diet, High-Fat , Fibrosis , Humans , Immunohistochemistry , Inflammation Mediators/metabolism , Insulin/blood , Kidney/pathology , Mice , Mice, Transgenic , MicroRNAs/genetics
15.
Atherosclerosis ; 250: 158-65, 2016 07.
Article En | MEDLINE | ID: mdl-27236706

BACKGROUND AND AIMS: Besides LDL-cholesterol, local vascular inflammation plays a key role in atherogenesis. Efficient therapies to treat the inflammatory component of the disease have not been established. The discovery of specialized inflammation-resolving mediators, such as resolvins may provide new opportunities for treatment. This study examines whether the ω-3 fatty acid eicosapentaenoic acid-derived resolvin E1 (RvE1), can reduce atherosclerosis, when administered alone or in combination with a cholesterol-lowering statin. METHODS: ApoE*3Leiden mice were fed a hypercholesterolemic diet for 9 weeks and subsequently treated with RvE1-low (1 mg/kg/day), RvE1-high (5 mg/kg/day), atorvastatin (1.5 mg/kg/day) or the combination of atorvastatin and RvE1-low for the following 16 weeks. RESULTS: RvE1-low and RvE1-high reduced atherosclerotic lesion size to the same extent (-35%; p < 0.05), attenuated the formation of severe lesions, also seen as a proportional increase in the presence of mild lesions, but did not alter plasma cholesterol levels. Cholesterol-lowering atorvastatin reduced atherosclerosis (-27%, p < 0.05), and the combination of RvE1 and atorvastatin further attenuated lesion size (-51%, p < 0.01) and increased the content of mild lesions. RvE1 did not affect plasma SAA, E-selectin, VCAM-1 or MCP-1 but did reduce plasma EPHX4 and down-regulated the local expression of pro-atherogenic genes in the aortae, (e.g. Cd74, Cd44, Ccl2, Ccr5 and Adam17) and significantly inactivated IFN-γ (p < 0.001) and TNF-α (p < 0.001) signalling pathways. CONCLUSIONS: RvE1 attenuates atherogenesis both alone and on top of a statin. The local effects of RvE1 are demonstrated by the modulated aortic expression of genes involved in inflammatory and immune responses, without altering plasma cholesterol or circulating SAA.


Aorta/pathology , Atorvastatin/pharmacology , Cholesterol/blood , Eicosapentaenoic Acid/analogs & derivatives , Lipids/blood , Animals , Atherosclerosis/blood , Cholesterol, LDL/blood , E-Selectin/blood , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/pharmacology , Fatty Acids, Omega-3/metabolism , Female , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Inflammation , Mice , Mice, Knockout, ApoE , Oligonucleotide Array Sequence Analysis , Serum Amyloid A Protein/metabolism , Treatment Outcome , Vascular Cell Adhesion Molecule-1/blood
16.
BMC Med Genomics ; 7: 35, 2014 Jun 17.
Article En | MEDLINE | ID: mdl-24938300

BACKGROUND: Cardiac pathological hypertrophy is associated with a significantly increased risk of coronary heart disease and has been observed in diabetic patients treated with rosiglitazone whereas most published studies do not suggest a similar increase in risk of cardiovascular events in pioglitazone-treated diabetic subjects. This study sought to understand the pathophysiological and molecular mechanisms underlying the disparate cardiovascular effects of rosiglitazone and pioglitazone and yield knowledge as to the causative nature of rosiglitazone-associated cardiac hypertrophy. METHODS: We used a high-fat diet-induced pre-diabetic mouse model to allow bioinformatics analysis of the transcriptome of the heart of mice treated with rosiglitazone or pioglitazone. RESULTS: Our data show that rosiglitazone and pioglitazone both markedly improved systemic markers for glucose homeostasis, fasting plasma glucose and insulin, and the urinary excretion of albumin. Only rosiglitazone, but not pioglitazone, tended to increase atherosclerosis and induced pathological cardiac hypertrophy, based on a significant increase in heart weight and increased expression of the validated markers, ANP and BNP. Functional enrichment analysis of the rosiglitazone-specific cardiac gene expression suggests that a shift in cardiac energy metabolism, in particular decreased fatty acid oxidation toward increased glucose utilization as indicated by down regulation of relevant PPARα and PGC1α target genes. This underlies the rosiglitazone-associated pathological hypertrophic cardiac phenotype in the current study. CONCLUSION: Application of a systems biology approach uncovered a shift in energy metabolism by rosiglitazone that may impact cardiac pathological hypertrophy.


Cardiomegaly/chemically induced , Cardiomegaly/physiopathology , Systems Biology/methods , Thiazolidinediones/adverse effects , Animals , Cardiomegaly/genetics , Diet, High-Fat , Gene Expression Profiling , Gene Expression Regulation/drug effects , Genome/genetics , Male , Mice , Myocardium/metabolism , Myocardium/pathology , PPAR alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Pioglitazone , Receptors, LDL/deficiency , Receptors, LDL/metabolism , Rosiglitazone , Transcription Factors/metabolism , Transcriptome/genetics
17.
Nat Cell Biol ; 15(11): 1282-93, 2013 Nov.
Article En | MEDLINE | ID: mdl-24161931

Although aberrant reactivation of embryonic gene programs is intricately linked to pathological heart disease, the transcription factors driving these gene programs remain ill-defined. Here we report that increased calcineurin/Nfat signalling and decreased miR-25 expression integrate to re-express the basic helix-loop-helix (bHLH) transcription factor dHAND (also known as Hand2) in the diseased human and mouse myocardium. In line, mutant mice overexpressing Hand2 in otherwise healthy heart muscle cells developed a phenotype of pathological hypertrophy. Conversely, conditional gene-targeted Hand2 mice demonstrated a marked resistance to pressure-overload-induced hypertrophy, fibrosis, ventricular dysfunction and induction of a fetal gene program. Furthermore, in vivo inhibition of miR-25 by a specific antagomir evoked spontaneous cardiac dysfunction and sensitized the murine myocardium to heart failure in a Hand2-dependent manner. Our results reveal that signalling cascades integrate with microRNAs to induce the expression of the bHLH transcription factor Hand2 in the postnatal mammalian myocardium with impact on embryonic gene programs in heart failure.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Heart Failure/metabolism , MicroRNAs/physiology , NFATC Transcription Factors/physiology , Animals , Base Sequence , Gene Expression Profiling , Gene Silencing , Humans , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , NFATC Transcription Factors/metabolism , RNA Processing, Post-Transcriptional , Sequence Homology, Nucleic Acid , Transcription, Genetic
18.
Curr Atheroscler Rep ; 14(3): 193-200, 2012 Jun.
Article En | MEDLINE | ID: mdl-22392328

MicroRNAs (miRs) are short non-coding RNA molecules involved in post-transcriptional gene regulation by binding to the 3' untranslated region of a messenger RNA (mRNA), thereby inhibiting the translation or inducing mRNA destabilization. MiRs are generally considered to act as intracellular mediators essential for normal cardiac function, and their deregulated expression profiles have been associated with cardiovascular diseases. Recent studies have revealed the existence of freely circulating miRs in human peripheral blood, which are present in a stable nature. This has raised the possibility that miRs may be released in the circulation and can serve as novel diagnostic markers for acute or chronic human disorders, including myocardial infarction (MI). This review summarizes the recent findings of miRs that fulfill the criteria of candidate biomarkers for MI.


Biomarkers/metabolism , MicroRNAs/biosynthesis , Myocardial Infarction , Myocardium/metabolism , Animals , Humans , MicroRNAs/genetics , Myocardial Infarction/diagnosis , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Prognosis
19.
Nat Cell Biol ; 12(12): 1220-7, 2010 Dec.
Article En | MEDLINE | ID: mdl-21102440

MicroRNAs (miRs) are a class of single-stranded, non-coding RNAs of about 22 nucleotides in length. Increasing evidence implicates miRs in myocardial disease processes. Here we show that miR-199b is a direct calcineurin/NFAT target gene that increases in expression in mouse and human heart failure, and targets the nuclear NFAT kinase dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1a (Dyrk1a), constituting a pathogenic feed forward mechanism that affects calcineurin-responsive gene expression. Mutant mice overexpressing miR-199b, or haploinsufficient for Dyrk1a, are sensitized to calcineurin/NFAT signalling or pressure overload and show stress-induced cardiomegaly through reduced Dyrk1a expression. In vivo inhibition of miR-199b by a specific antagomir normalized Dyrk1a expression, reduced nuclear NFAT activity and caused marked inhibition and even reversal of hypertrophy and fibrosis in mouse models of heart failure. Our results reveal that microRNAs affect cardiac cellular signalling and gene expression, and implicate miR-199b as a therapeutic target in heart failure.


Calcineurin/metabolism , Heart Failure/genetics , Heart Failure/metabolism , MicroRNAs/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Animals , Heart Failure/pathology , Humans , Mice , Mice, Transgenic , NFATC Transcription Factors/metabolism , Rats , Dyrk Kinases
20.
Circulation ; 114(1 Suppl): I226-32, 2006 Jul 04.
Article En | MEDLINE | ID: mdl-16820577

BACKGROUND: Pretreatment with the volatile anesthetic sevoflurane protects cardiomyocytes against subsequent ischemic episodes caused by a protein kinase C (PKC)-delta mediated preconditioning effect. Sevoflurane directly modulates cardiac Ca2+ handling, and because Ca2+ also serves as a mediator in other cardioprotective signaling pathways, possible involvement of the Na+/Ca2+ exchanger (NCX) in relation with PKC-delta in sevoflurane-induced cardioprotection was investigated. METHODS AND RESULTS: Isolated right ventricular rat trabeculae were subjected to simulated ischemia and reperfusion (SI/R), consisting of superfusion with hypoxic glucose-free buffer for 40 minutes after rigor development, followed by reperfusion with normoxic glucose containing buffer. Preconditioning with sevoflurane before SI/R improved isometric force development during contractile recovery at 60 minutes after the end of hypoxic superfusion (83+/-7% [sevo] versus 57+/-2% [SI/R];n=8; P<0.01). Inhibition of the reverse mode of the NCX by KB-R7943 (10 micromol/L) or SEA0400 (1 micromol/L) during preconditioning attenuated the protective effect of sevoflurane. KB-R7943 and SEA0400 did not have intrinsic effects on the contractile recovery. Furthermore, inhibition of the NCX in trabeculae exposed to sevoflurane reduced sevoflurane-induced PKC-delta translocation toward the sarcolemma, as demonstrated by digital imaging fluorescent microscopy. The degree of PKC-delta phosphorylation at serine643 as determined by western blot analysis was not affected by sevoflurane. CONCLUSIONS: Sevoflurane-induced cardioprotection depends on the NCX preceding PKC-delta translocation presumably via increased NCX-mediated Ca2+ influx. This may suggest that increased myocardial Ca2+ load triggers the cardioprotective signaling cascade elicited by volatile anesthetic agents similar to other modes of preconditioning.


Anesthetics, Inhalation/therapeutic use , Calcium Signaling/physiology , Cardiotonic Agents/therapeutic use , Ischemic Preconditioning, Myocardial/methods , Methyl Ethers/therapeutic use , Myocardial Ischemia/enzymology , Myocardial Reperfusion Injury/prevention & control , Protein Kinase C-delta/physiology , Sodium-Calcium Exchanger/physiology , Anesthetics, Inhalation/pharmacology , Aniline Compounds/pharmacology , Animals , Calcium Signaling/drug effects , Cardiotonic Agents/pharmacology , Enzyme Activation , Glucose/pharmacology , Heart Ventricles/drug effects , Heart Ventricles/enzymology , In Vitro Techniques , Male , Methyl Ethers/pharmacology , Myocardial Reperfusion Injury/enzymology , Phenyl Ethers/pharmacology , Phosphorylation/drug effects , Phosphoserine/analysis , Protein Processing, Post-Translational/drug effects , Protein Transport/drug effects , Rats , Rats, Wistar , Sarcolemma/enzymology , Sevoflurane , Signal Transduction/drug effects , Signal Transduction/physiology , Sodium-Calcium Exchanger/antagonists & inhibitors , Thiourea/analogs & derivatives , Thiourea/pharmacology
...