Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38675428

Protein kinase CK1δ (CK1δ) is a serine-threonine/kinase that modulates different physiological processes, including the cell cycle, DNA repair, and apoptosis. CK1δ overexpression, and the consequent hyperphosphorylation of specific proteins, can lead to sleep disorders, cancer, and neurodegenerative diseases. CK1δ inhibitors showed anticancer properties as well as neuroprotective effects in cellular and animal models of Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis. To obtain new ATP-competitive CK1δ inhibitors, three sets of benzimidazole-2-amino derivatives were synthesized (1-32), bearing different substituents on the fused benzo ring (R) and diverse pyrazole-containing acyl moieties on the 2-amino group. The best-performing derivatives were those featuring the (1H-pyrazol-3-yl)-acetyl moiety on the benzimidazol-2-amino scaffold (13-32), which showed CK1δ inhibitor activity in the low micromolar range. Among the R substituents, 5-cyano was the most advantageous, leading to a compound endowed with nanomolar potency (23, IC50 = 98.6 nM). Molecular docking and dynamics studies were performed to point out the inhibitor-kinase interactions.

2.
Mol Pharmacol ; 105(3): 213-223, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38182432

This study describes the localization and computational prediction of a binding site for the A3 adenosine receptor (A3AR) positive allosteric modulator 2-cyclohexyl-1H-imidazo[4,5-c]quinolin-4-(3,4-dichlorophenyl)amine (LUF6000). The work reveals an extrahelical lipid-facing binding pocket disparate from the orthosteric binding site that encompasses transmembrane domain (TMD) 1, TMD7, and Helix (H) 8, which was predicted by molecular modeling and validated by mutagenesis. According to the model, the nearly planar 1H-imidazo[4,5-c]quinolinamine ring system lies parallel to the transmembrane segments, inserted into an aromatic cage formed by π-π stacking interactions with the side chains of Y2847.55 in TMD7 and Y2938.54 in H8 and by π-NH bonding between Y2847.55 and the exocyclic amine. The 2-cyclohexyl group is positioned "upward" within a small hydrophobic subpocket created by residues in TMDs 1 and 7, while the 3,4-dichlorophenyl group extends toward the lipid interface. An H-bond between the N-1 amine of the heterocycle and the carbonyl of G291.49 further stabilizes the interaction. Molecular dynamics simulations predicted two metastable intermediates, one resembling a pose determined by molecular docking and a second involving transient interactions with Y2938.54; in simulations, each of these intermediates converges into the final bound state. Structure-activity-relationships for replacement of either of the identified exocyclic or endocyclic amines with heteroatoms lacking H-bond donating ability were consistent with the hypothetical pose. Thus, we characterized an allosteric pocket for 1H-imidazo[4,5-c]quinolin-4-amines that is consistent with data generated by orthogonal methods, which will aid in the rational design of improved A3AR positive allosteric modulators. SIGNIFICANCE STATEMENT: Orthosteric A3AR agonists have advanced in clinical trials for inflammatory conditions, liver diseases, and cancer. Thus, the clinical appeal of selective receptor activation could extend to allosteric enhancers, which would induce site- and time-specific activation in the affected tissue. By identifying the allosteric site for known positive allosteric modulators, structure-based drug discovery modalities can be enabled to enhance the pharmacological properties of the 1H-imidazo[4,5-c]quinolin-4-amine class of A3AR positive allosteric modulators.


Amines , Receptors, Purinergic P1 , Molecular Docking Simulation , Allosteric Regulation , Receptors, Purinergic P1/metabolism , Binding Sites , Allosteric Site , Molecular Dynamics Simulation , Lipids
3.
Nat Chem ; 16(2): 249-258, 2024 Feb.
Article En | MEDLINE | ID: mdl-37857844

Nucleoside diphosphates and triphosphates impact nearly every aspect of biochemistry; however, the use of such compounds as tools or medicinal leads for nucleotide-dependent enzymes and receptors is hampered by their rapid in vivo metabolism. Although a successful strategy to address the instability of the monophosphate moiety in oligonucleotide therapeutics has been accomplished by their isosteric replacement with phosphorothioates, no practical methods exist to rapidly and controllably access stereopure di- and triphosphate thioisosteres of both natural and unnatural nucleosides. Here we show how a modular, reagent-based platform can enable the stereocontrolled and scalable synthesis of a library of such molecules. This operationally simple approach provides access to pure stereoisomers of nucleoside α-thiodiphosphates and α-thiotriphosphates, as well as symmetrical or unsymmetrical dinucleoside thiodiphosphates and thiotriphosphates (including RNA cap reagents). We demonstrate that ligand-receptor interactions can be dramatically influenced by P-stereochemistry, showing that such thioisosteric replacements can have profound effects on the potency and stability of lead candidates.


Nucleosides , Nucleotides , Nucleosides/chemistry , Nucleotides/chemistry , Polyphosphates , Biochemistry
4.
ACS Med Chem Lett ; 14(12): 1640-1646, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38116442

A1 adenosine receptor (A1AR) agonists have cerebroprotective, cardioprotective, antinociceptive, and other pharmaceutical applications. We explored the structure-activity relationship of 5-arylethynyl aminothiophenes as A1AR positive allosteric modulators (PAMs). The derivatives were compared in binding and functional assays at the human A1AR, indicating that some fluoro-substituted analogues have enhanced PAM activity. We identified substitution of the terminal phenyl ring in 12 (2-F-Ph), 15 (3,4-F2-Ph, MRS7935), and 21 (2-CF3-Ph) as particularly enhancing the PAM activity. 15 was also shown to act as an A1 ago-PAM with EC50 ≈ 2 µM, without activity (30 µM) at other ARs. Molecular modeling indicated that both the 5-arylethynyl and the 4-neopentyl groups are located in a region outside the receptor transmembrane helix bundle that is in contact with the phospholipid bilayer, consistent with the preference for nonpolar substitution of the aryl moiety. Although they are hydrophobic, these PAMs could provide potential drug candidate molecules for engaging protective A1ARs.

5.
Front Mol Biosci ; 10: 1294543, 2023.
Article En | MEDLINE | ID: mdl-38028536

Ribonucleic acids are gradually becoming relevant players among putative drug targets, thanks to the increasing amount of structural data exploitable for the rational design of selective and potent binders that can modulate their activity. Mainly, this information allows employing different computational techniques for predicting how well would a ribonucleic-targeting agent fit within the active site of its target macromolecule. Due to some intrinsic peculiarities of complexes involving nucleic acids, such as structural plasticity, surface charge distribution, and solvent-mediated interactions, the application of routinely adopted methodologies like molecular docking is challenged by scoring inaccuracies, while more physically rigorous methods such as molecular dynamics require long simulation times which hamper their conformational sampling capabilities. In the present work, we present the first application of Thermal Titration Molecular Dynamics (TTMD), a recently developed method for the qualitative estimation of unbinding kinetics, to characterize RNA-ligand complexes. In this article, we explored its applicability as a post-docking refinement tool on RNA in complex with small molecules, highlighting the capability of this method to identify the native binding mode among a set of decoys across various pharmaceutically relevant test cases.

6.
Biomolecules ; 13(11)2023 11 03.
Article En | MEDLINE | ID: mdl-38002292

Adenosine receptors are largely distributed in our organism and are promising therapeutic targets for the treatment of many pathologies. In this perspective, investigating the structural features of the ligands leading to affinity and/or selectivity is of great interest. In this work, we have focused on a small series of pyrazolo-triazolo-pyrimidine antagonists substituted in positions 2, 5, and N8, where bulky acyl moieties at the N5 position and small alkyl groups at the N8 position are associated with affinity and selectivity at the A3 adenosine receptor even if a good affinity toward the A2B adenosine receptor has also been observed. Conversely, a free amino function at the 5 position induces high affinity at the A2A and A1 receptors with selectivity vs. the A3 subtype. A molecular modeling study suggests that differences in affinity toward A1, A2A, and A3 receptors could be ascribed to two residues: one in the EL2, E168 in human A2A/E172 in human A1, that is occupied by the hydrophobic residue V169 in the human A3 receptor; and the other in TM6, occupied by H250/H251 in human A2A and A1 receptors and by a less bulky S247 in the A3 receptor. In the end, these findings could help to design new subtype-selective adenosine receptor ligands.


Purinergic P1 Receptor Antagonists , Receptors, Purinergic P1 , Humans , Structure-Activity Relationship , Purinergic P1 Receptor Antagonists/pharmacology , Models, Molecular , Pyrimidines/pharmacology , Pyrimidines/chemistry
7.
ChemMedChem ; 18(21): e202300299, 2023 11 02.
Article En | MEDLINE | ID: mdl-37675643

The A3 adenosine receptor is an interesting target whose role in cancer is controversial. In this work, a structural investigation at the 2-position of the [1,2,4]triazolo[1,5-c]pyrimidine nucleus was performed, finding new potent and selective A3 adenosine receptor antagonists such as the ethyl 2-(4-methoxyphenyl)-5-(methylamino)-[1,2,4]triazolo[1,5-c]pyrimidine-8-carboxylate (20, DZ123) that showed a Ki value of 0.47 nM and an exceptional selectivity profile over the other adenosine receptor subtypes. Computational studies were performed to rationalize the affinity and the selectivity profile of the tested compounds at the A3 adenosine receptor and the A1 and A2A adenosine receptors. Compound 20 was tested on both A3 adenosine receptor positive cell lines (CHO-A3 AR transfected, THP1 and HCT16) and on A3 negative cancer cell lines, showing no effect in the latter and a pro-proliferative effect at a low concentration in the former. These interesting results pave the way to further investigation on both the mechanism involved and potential therapeutic applications.


Neoplasms , Receptor, Adenosine A3 , Cricetinae , Animals , Structure-Activity Relationship , Receptor, Adenosine A3/metabolism , Receptors, Purinergic P1/chemistry , Receptors, Purinergic P1/metabolism , Cell Line , Pyrimidines/chemistry , Purinergic P1 Receptor Antagonists/pharmacology , Purinergic P1 Receptor Antagonists/chemistry , CHO Cells , Receptor, Adenosine A2A
8.
ACS Pharmacol Transl Sci ; 6(9): 1288-1305, 2023 Sep 08.
Article En | MEDLINE | ID: mdl-37705595

(N)-Methanocarba adenosine derivatives (A3 adenosine receptor (AR) agonists containing bicyclo[3.1.0]hexane replacing furanose) were chain-extended at N6 and C2 positions with terminal alkenes for ring closure. The resulting macrocycles of 17-20 atoms retained affinity, indicating a spatially proximal orientation of these receptor-bound chains, consistent with molecular modeling of 12. C2-Arylethynyl-linked macrocycle 19 was more A3AR-selective than 2-ether-linked macrocycle 12 (both 5'-methylamides, human (h) A3AR affinities (Ki): 22.1 and 25.8 nM, respectively), with lower mouse A3AR affinities. Functional hA3AR comparison of two sets of open/closed analogues in ß-arrestin2 and Gi/o protein assays showed certain signaling preferences divergent from reference agonist Cl-IB-MECA 1. The potencies of 1 at all three Gαi isoforms were slightly less than its hA3AR binding affinity (Ki: 1.4 nM), while the Gαi1 and Gαi2 potencies of macrocycle 12 were roughly an order of magnitude higher than its radioligand binding affinity. Gαi2-coupling was enhanced in macrocycle 12 (EC50 2.56 nM, ∼40% greater maximal efficacy than 1). Di-O-allyl precursor 18 cyclized to form 19, increasing the Gαi1 potency by 7.5-fold. The macrocycles 12 and 19 and their open precursors 11 and 18 potently stimulated ß-arrestin2 recruitment, with EC50 values (nM) of 5.17, 4.36, 1.30, and 4.35, respectively, and with nearly 50% greater efficacy compared to 1. This example of macrocyclization altering the coupling pathways of small-molecule (nonpeptide) GPCR agonists is the first for potent and selective macrocyclic AR agonists. These initial macrocyclic derivatives can serve as a guide for the future design of macrocyclic AR agonists displaying unanticipated pharmacology.

9.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article En | MEDLINE | ID: mdl-36835004

Molecular docking is one of the most widely used computational approaches in the field of rational drug design, thanks to its favorable balance between the rapidity of execution and the accuracy of provided results. Although very efficient in exploring the conformational degrees of freedom available to the ligand, docking programs can sometimes suffer from inaccurate scoring and ranking of generated poses. To address this issue, several post-docking filters and refinement protocols have been proposed throughout the years, including pharmacophore models and molecular dynamics simulations. In this work, we present the first application of Thermal Titration Molecular Dynamics (TTMD), a recently developed method for the qualitative estimation of protein-ligand unbinding kinetics, to the refinement of docking results. TTMD evaluates the conservation of the native binding mode throughout a series of molecular dynamics simulations performed at progressively increasing temperatures with a scoring function based on protein-ligand interaction fingerprints. The protocol was successfully applied to retrieve the native-like binding pose among a set of decoy poses of drug-like ligands generated on four different pharmaceutically relevant biological targets, including casein kinase 1δ, casein kinase 2, pyruvate dehydrogenase kinase 2, and SARS-CoV-2 main protease.


COVID-19 , Molecular Dynamics Simulation , Humans , Ligands , Molecular Docking Simulation/methods , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects
10.
Purinergic Signal ; 19(3): 565-578, 2023 09.
Article En | MEDLINE | ID: mdl-35687212

Adenosine receptor (AR) ligands are being developed for metabolic, cardiovascular, neurological, and inflammatory diseases and cancer. The ease of drug discovery is contingent on the availability of pharmacological tools. Fluorescent antagonist ligands for the human A2A and A3ARs were synthesized using two validated pharmacophores, 1,3-dipropyl-8-phenylxanthine and triazolo[1,5-c]quinazolin-5-yl)amine, which were coupled to eight reporter fluorophores: AlexaFluor, JaneliaFluor (JF), cyanine, and near infrared (NIR) dyes. The conjugates were first screened using radioligand binding in HEK293 cells expressing one of the three AR subtypes. The highest affinities at A2AAR were Ki 144-316 nM for 10, 12, and 19, and at A3AR affinity of Ki 21.6 nM for 19. Specific binding of JF646 conjugate MRS7774 12 to the HEK293 cell surface A2AAR was imaged using confocal microscopy. Compound 19 MRS7535, a triazolo[1,5-c]quinazolin-5-yl)amine containing a Sulfo-Cy7 NIR dye, was suitable for A3AR characterization in whole cells by flow cytometry (Kd 11.8 nM), and its bitopic interaction mode with an A3AR homology model was predicted. Given its affinity and selectivity (11-fold vs. A2AAR, ~ 50-fold vs. A1AR and A2BAR) and a good specific-to-nonspecific binding ratio, 19 could be useful for live cell or potentially a diagnostic in vivo NIR imaging tool and/or therapy targeting the A3AR.


Fluorescent Dyes , Purinergic P1 Receptor Antagonists , Humans , Purinergic P1 Receptor Antagonists/pharmacology , HEK293 Cells , Flow Cytometry , Amines , Receptor, Adenosine A3/metabolism , Receptor, Adenosine A2A/metabolism , Adenosine A2 Receptor Antagonists/pharmacology
11.
J Med Chem ; 65(22): 15238-15262, 2022 11 24.
Article En | MEDLINE | ID: mdl-36367749

We previously reported 1H-imidazo[4,5-c]quinolin-4-amines as A3 adenosine receptor (A3AR) positive allosteric modulators (PAMs). A3AR agonists, but not PAMs, are in clinical trials for inflammatory diseases and liver conditions. We synthesized new analogues to distinguish 2-cyclopropyl antagonist 17 (orthosteric interaction demonstrated by binding and predicted computationally) from PAMs (derivatives with large 2-alkyl/cycloalkyl/bicycloalkyl groups). We predicted PAM binding at a hydrophobic site on the A3AR cytosolic interface. Although having low Caco-2 permeability and high plasma protein binding, hydrophobic 2-cyclohept-4-enyl-N-3,4-dichlorophenyl, MRS7788 18, and 2-heptan-4-yl-N-4-iodophenyl, MRS8054 39, derivatives were orally bioavailable in rat. 2-Heptan-4-yl-N-3,4-dichlorophenyl 14 and 2-cyclononyl-N-3,4-dichlorophenyl 20 derivatives and 39 greatly enhanced Cl-IB-MECA-stimulated [35S]GTPγS binding Emax, with only 12b trending toward decreasing the agonist EC50. A feasible route for radio-iodination at the p-position of a 4-phenylamino substituent suggests a potential radioligand for allosteric site binding. Herein, we advanced an allosteric approach to developing A3AR-activating drugs that are potentially event- and site-specific in action.


Adenosine A3 Receptor Agonists , Receptors, Purinergic P1 , Humans , Rats , Animals , Caco-2 Cells , Allosteric Regulation , Receptors, Purinergic P1/metabolism , Adenosine A3 Receptor Agonists/pharmacology , Amines
12.
Biomolecules ; 12(4)2022 04 16.
Article En | MEDLINE | ID: mdl-35454173

Guanine nucleotides can flip between a North and South conformation in the ribose moiety. To test the enzymatic activity of GTPases bound to nucleotides in the two conformations, we generated methanocarba guanine nucleotides in the North or South envelope conformations, i.e., (N)-GTP and (S)-GTP, respectively. With dynamin as a model system, we examined the effects of (N)-GTP and (S)-GTP on dynamin-mediated membrane constriction, an activity essential for endocytosis. Dynamin membrane constriction and fission activity are dependent on GTP binding and hydrolysis, but the effect of the conformational state of the GTP nucleotide on dynamin activity is not known. After reconstituting dynamin-mediated lipid tubulation and membrane constriction in vitro, we observed via cryo-electron microscopy (cryo-EM) that (N)-GTP, but not (S)-GTP, enables the constriction of dynamin-decorated lipid tubules. These findings suggest that the activity of dynamin is dependent on the conformational state of the GTP nucleotide. However, a survey of nucleotide ribose conformations associated with dynamin structures in nature shows almost exclusively the (S)-conformation. The explanation for this mismatch of (N) vs. (S) required for GTP analogues in a dynamin-mediated process will be addressed in future studies.


Guanine Nucleotides , Ribose , Cryoelectron Microscopy , Dynamins/metabolism , Guanosine Triphosphate/chemistry , Lipids
13.
ACS Med Chem Lett ; 13(4): 623-631, 2022 Apr 14.
Article En | MEDLINE | ID: mdl-35450351

The A3 adenosine receptor (A3AR) is a target for pain, ischemia, and inflammatory disease therapy. Among the ligand tools available are selective agonists and antagonists, including radioligands, but most high-affinity non-nucleoside antagonists are limited in selectivity to primate species. We have explored the structure-activity relationship of a previously reported A3AR antagonist DPTN 9 (N-[4-(3,5-dimethylphenyl)-5-(4-pyridyl)-1,3-thiazol-2-yl]nicotinamide) for radiolabeling, including 3-halo derivatives (3-iodo, MRS7907), and characterized 9 as a high -affinity radioligand [3H]MRS7799. A3AR K d values were (nM): 0.55 (human), 3.74 (mouse), and 2.80 (rat). An extended methyl acrylate (MRS8074, 19) maintained higher affinity (18.9 nM) than a 3-((5-chlorothiophen-2-yl)ethynyl) derivative 20. Compound 9 had an excellent brain distribution in rats (brain/plasma ratio ∼1). Receptor docking predicted its orthosteric site binding by engaging residues that were previously found to be essential for AR binding. Thus the new radioligand promises to be a useful species-general antagonist tracer for receptor characterization and drug discovery.

14.
J Med Chem ; 65(4): 3434-3459, 2022 02 24.
Article En | MEDLINE | ID: mdl-35113556

High affinity phenyl-piperidine P2Y14R antagonist 1 (PPTN) was modified with piperidine bridging moieties to probe receptor affinity and hydrophobicity. Various 2-azanorbornane, nortropane, isonortropane, isoquinuclidine, and ring-opened cyclopentylamino derivatives preserved human P2Y14R affinity (fluorescence binding assay), and their pharmacophoric overlay was compared. Enantiomeric 2-azabicyclo[2.2.1]hept-5-en-3-one precursors assured stereochemically unambiguous, diverse products. Pure (S,S,S) 2-azanorbornane enantiomer 15 (MRS4738) displayed higher affinity than 1 (3-fold higher affinity than enantiomer 16) and in vivo antihyperallodynic and antiasthmatic activity. Its double prodrug 143 (MRS4815) dramatically reduced lung inflammation in a mouse asthma model. Related lactams 21-24 and dicarboxylate 42 displayed intermediate affinity and enhanced aqueous solubility. Isoquinuclidine 34 (IC50 15.6 nM) and isonortropanol 30 (IC50 21.3 nM) had lower lipophilicity than 1. In general, rigidified piperidine derivatives did not lower lipophilicity dramatically, except those rings with multiple polar groups. P2Y14R molecular modeling based on a P2Y12R structure showed stable and persistent key interactions for compound 15.


Piperidines/chemistry , Purinergic P2 Receptor Antagonists/pharmacology , Animals , Mice , Purinergic P2 Receptor Antagonists/chemistry , Structure-Activity Relationship
15.
J Med Chem ; 65(3): 2409-2433, 2022 02 10.
Article En | MEDLINE | ID: mdl-35080883

We recently reported N4-substituted 3-methylcytidine-5'-α,ß-methylenediphosphates as CD73 inhibitors, potentially useful in cancer immunotherapy. We now expand the structure-activity relationship of pyrimidine nucleotides as human CD73 inhibitors. 4-Chloro (MRS4598 16; Ki = 0.673 nM) and 4-iodo (MRS4620 18; Ki = 0.436 nM) substitution of the N4-benzyloxy group decreased Ki by ∼20-fold. Primary alkylamine derivatives coupled through a p-amido group with a varying methylene chain length (24 and 25) were functionalized congeners, for subsequent conjugation to carrier or reporter moieties. X-ray structures of hCD73 with two inhibitors indicated a ribose ring conformational adaptation, and the benzyloxyimino group (E configuration) binds to the same region (between the C-terminal and N-terminal domains) as N4-benzyl groups in adenine inhibitors. Molecular dynamics identified stabilizing interactions and predicted conformational diversity. Thus, by N4-benzyloxy substitution, we have greatly enhanced the inhibitory potency and added functionality enabling molecular probes. Their potential as anticancer drugs was confirmed by blocking CD73 activity in tumor tissues in situ.


5'-Nucleotidase/antagonists & inhibitors , Cytosine Nucleotides/pharmacology , Diphosphonates/pharmacology , Enzyme Inhibitors/pharmacology , 5'-Nucleotidase/metabolism , Adult , Cytosine Nucleotides/chemical synthesis , Cytosine Nucleotides/metabolism , Diphosphonates/chemical synthesis , Diphosphonates/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Humans , Male , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Neoplasms/enzymology , Palatine Tonsil/enzymology , Protein Binding , Structure-Activity Relationship
16.
Eur J Med Chem ; 228: 113983, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34844790

Following our study of 4'-truncated (N)-methanocarba-adenosine derivatives that displayed unusually high mouse (m) A3AR affinity, we incorporated dopamine-related N6 substituents in the full agonist 5'-methylamide series. N6-(2-(4-Hydroxy-3-methoxy-phenyl)ethyl) derivative MRS7618 11 displayed Ki (nM) 0.563 at hA3AR (∼20,000-fold selective) and 1.54 at mA3AR. 2-Alkyl ethers maintained A3 affinity, but with less selectivity than 2-alkynes. Parallel functional assays of G protein-dependent and ß-arrestin 2 (ßarr2)-dependent pathways indicate these are full agonists but not biased. Through use of computational modeling, we hypothesized that phenyl OH/OMe groups interact with polar residues, particularly Gln261, on the mA3AR extracellular loops as the basis for the affinity enhancement. Although the pharmacokinetics indicated facile clearance of parent O-methyl catechol nucleosides 21 and 31, prolonged mA3AR activation in vivo was observed in a hypothermia model, suggested potential formation of active metabolites through demethylation. Selected analogues induced mouse hypothermia following i.p. injection, indicative of peripheral A3AR agonism in vivo.


Adenosine A3 Receptor Agonists/pharmacology , Dopamine/pharmacology , Receptor, Adenosine A3/metabolism , Adenosine A3 Receptor Agonists/chemical synthesis , Adenosine A3 Receptor Agonists/chemistry , Dopamine/chemical synthesis , Dopamine/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship
17.
Methods Cell Biol ; 166: 133-159, 2021.
Article En | MEDLINE | ID: mdl-34752329

We compare the GPCR-ligand interactions and highlight important residues for recognition in purinergic receptors-from both X-ray crystallographic and cryo-EM structures. These include A1 and A2A adenosine receptors, and P2Y1 and P2Y12 receptors that respond to ADP and other nucleotides. These receptors are important drug discovery targets for immune, metabolic and nervous system disorders. In most cases, orthosteric ligands are represented, except for one allosteric P2Y1 antagonist. This review catalogs the residues and regions that engage in contacts with ligands or with other GPCR protomers in dimeric forms. Residues that are in proximity to bound ligands within purinergic GPCR families are correlated. There is extensive conservation of recognition motifs between adenosine receptors, but the P2Y1 and P2Y12 receptors are each structurally distinct in their ligand recognition. Identifying common interaction features for ligand recognition within a receptor class that has multiple structures available can aid in the drug discovery process.


Drug Discovery , Dimerization , Humans , Ligands
18.
RSC Med Chem ; 12(11): 1808-1825, 2021 Nov 17.
Article En | MEDLINE | ID: mdl-34825182

Nucleoside derivatives are well represented as pharmaceuticals due to their druglike physicochemical properties, and some nucleoside drugs are designed to act on receptors. The purinergic signaling pathways for extracellular nucleosides and nucleotides, consisting of adenosine receptors, P2Y/P2X receptors for nucleotides, and enzymes such as adenosine (ribo)kinase, have been extensively studied. A general modification, i.e. a constrained, bicyclic ring system (bicyclo[3.1.0]hexane, also called methanocarba) substituted in place of a furanose ring, can increase nucleoside/nucleotide potency and/or selectivity at purinergic and antiviral targets and in interactions at diverse and unconventional targets. Compared to other common drug discovery scaffolds containing planar rings, methanocarba nucleosides display greater sp3 character (i.e. more favorable as drug-like molecules) and can manifest as sterically-constrained North (N) or South (S) conformations. Initially weak, off-target interactions of (N)-methanocarba adenosine derivatives were detected as leads that were structurally optimized to enhance activity and selectivity toward target proteins that normally do not recognize nucleosides. By this approach, novel modulators for 5HT2 serotonin and κ-opioid receptors, dopamine (DAT) and ATP-binding cassette (ABC) transporters were found, and previously undetected antiviral activities were revealed. Thus, through methanocarba nucleoside synthesis, structure-activity relationships, and multi-target pharmacology, a robust purinergic receptor scaffold has been repurposed to satisfy the pharmacophoric requirements of various GPCRs, enzymes and transporters.

19.
Bioorg Med Chem ; 38: 116132, 2021 05 15.
Article En | MEDLINE | ID: mdl-33872958

Since 2007, Metalloproteases (MMPs) have been considered potential targets for treating osteoarthritis (OA), for which the primary pathogenic event is the extensive degeneration of articular cartilage. MMP3 is an enzyme critical for these degenerative changes. However, problems of selectivity, low bioavailability and poor metabolic profile during clinical trials of MMPs inhibitors (MMPIs) led to limited beneficial effect and thus did not justify further pursuit of the clinical studies. In a previous work, a new alkyl derivative of hyaluronic acid (HA), HYADD4®, previously approved as intra-articular treatment for knee OA, was studied in vitro and in vivo as MMP3I. Molecular simulation studies confirmed the interaction between the alkyl side chain of this HA derivative and the additional S1' pocket of MMP3. However, the high MW and the polar HA backbone of HYADD4® imply a high desolvation energy cost, which can potentially decrease its inhibitory potency. In this study, a new class of MMP3Is based on a small peptide backbone (CGV) chemically derivatized with an alkyl chain was developed through interactive cycles of design, synthesis and screening, accompanied by computational evaluation and optimization. Two MMP3Is, e(I) and l(II), were selected because of their effective inhibitory activity (3.2 and 10.2 µM, respectively) and water solubility. Both MMPIs showed a broad range of inhibitory effects against almost all the MMPs tested. In an in vitro model of inflammatory OA, e(I) was the most effective MMPI: at the concentration of 93 µM, it reversed inflammatory outcomes. Moreover, because of its amphiphilic structure, the e(I) MMPI promoted stable micellar formulation at concentrations higher than 0.2 mg/mL in water. The findings were confirmed by TEM and Nile red staining analysis. Based on these results, the e(I) MMPI can be considered a good candidate for the intra-articular treatment of OA, and the micellar formulation of this peptide in an aqueous buffer can potentially increase the bioavailability and, thus, the efficacy of the MMPIs.


Enzyme Inhibitors/pharmacology , Matrix Metalloproteinase 3/metabolism , Osteoarthritis, Knee/drug therapy , Peptides/pharmacology , Surface-Active Agents/pharmacology , Animals , Cattle , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Osteoarthritis, Knee/metabolism , Peptides/chemical synthesis , Peptides/chemistry , Structure-Activity Relationship , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry
20.
J Med Chem ; 64(8): 5099-5122, 2021 04 22.
Article En | MEDLINE | ID: mdl-33787273

A known zwitterionic, heterocyclic P2Y14R antagonist 3a was substituted with diverse groups on the central phenyl and terminal piperidine moieties, following a computational selection process. The most potent analogues contained an uncharged piperidine bioisostere, prescreened in silico, while an aza-scan (central phenyl ring) reduced P2Y14R affinity. Piperidine amide 11, 3-aminopropynyl 19, and 5-(hydroxymethyl)isoxazol-3-yl) 29 congeners in the triazole series maintained moderate receptor affinity. Adaption of 5-(hydroxymethyl)isoxazol-3-yl gave the most potent naphthalene-containing (32; MRS4654; IC50, 15 nM) and less active phenylamide-containing (33) scaffolds. Thus, a zwitterion was nonessential for receptor binding, and molecular docking and dynamics probed the hydroxymethylisoxazole interaction with extracellular loops. Also, amidomethyl ester prodrugs were explored to reversibly block the conserved carboxylate group to provide neutral analogues, which were cleavable by liver esterase, and in vivo efficacy demonstrated. We have, in stages, converted zwitterionic antagonists into neutral molecules designed to produce potent P2Y14R antagonists for in vivo application.


Piperidines/chemistry , Purinergic P2 Receptor Antagonists/chemistry , Receptors, Purinergic P2/metabolism , Animals , Binding Sites , Disease Models, Animal , Drug Design , Humans , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Neuralgia/drug therapy , Piperidines/metabolism , Prodrugs/chemistry , Prodrugs/metabolism , Purinergic P2 Receptor Antagonists/metabolism , Purinergic P2 Receptor Antagonists/therapeutic use , Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2/genetics , Solubility , Structure-Activity Relationship , Triazoles/chemistry
...