Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 75(3): 590-604.e12, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31230816

ABSTRACT

Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.


Subject(s)
Epigenetic Repression/genetics , Long Interspersed Nucleotide Elements/genetics , Retroelements/genetics , YY1 Transcription Factor/genetics , Binding Sites/genetics , DNA Methylation/genetics , DNA-Binding Proteins/genetics , Genome, Human/genetics , Hippocampus/metabolism , Humans , Liver/metabolism , Neurons/metabolism , Single-Cell Analysis
2.
Cell Chem Biol ; 26(8): 1095-1109.e14, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31155508

ABSTRACT

Retrotransposons are a type of transposable element (TE) that have amplified to astonishing numbers in mammalian genomes, comprising more than a third of the human and mouse genomes. Long interspersed element class 1 (LINE-1 or L1) retrotransposons are abundant and currently active retroelements in the human and mouse genomes. Similarly, long terminal repeat (LTR)-containing retrotransposons are abundant in both genomes, although only active in mice. LTR- and LINE-1-retroelements use different mechanisms for retrotransposition, although both involve the reverse transcription of an intermediate retroelement-derived RNA. Retrotransposon activity continues to effect the germline and somatic genomes, generating interindividual variability over evolution and potentially influencing cancer and brain physiology, respectively. However, relatively little is known about the functional consequences of retrotransposition. In this study, we have synthesized and characterized reverse transcriptase inhibitors specific for mammalian LINE-1 retrotransposons, which might help deciphering the functional impact of retrotransposition in vivo.


Subject(s)
Dideoxynucleosides/pharmacology , Long Interspersed Nucleotide Elements/drug effects , Reverse Transcriptase Inhibitors/pharmacology , Cell Line , Dideoxynucleosides/chemical synthesis , Dideoxynucleosides/chemistry , HEK293 Cells , HeLa Cells , Humans , Molecular Structure , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry
3.
Mol Cell Biol ; 39(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30692270

ABSTRACT

The retrotransposon LINE-1 (L1) is a significant source of endogenous mutagenesis in humans. In each individual genome, a few retrotransposition-competent L1s (RC-L1s) can generate new heritable L1 insertions in the early embryo, primordial germ line, and germ cells. L1 retrotransposition can also occur in the neuronal lineage and cause somatic mosaicism. Although DNA methylation mediates L1 promoter repression, the temporal pattern of methylation applied to individual RC-L1s during neurogenesis is unclear. Here, we identified a de novo L1 insertion in a human induced pluripotent stem cell (hiPSC) line via retrotransposon capture sequencing (RC-seq). The L1 insertion was full-length and carried 5' and 3' transductions. The corresponding donor RC-L1 was part of a large and recently active L1 transduction family and was highly mobile in a cultured-cell L1 retrotransposition reporter assay. Notably, we observed distinct and dynamic DNA methylation profiles for the de novo L1 and members of its extended transduction family during neuronal differentiation. These experiments reveal how a de novo L1 insertion in a pluripotent stem cell is rapidly recognized and repressed, albeit incompletely, by the host genome during neurodifferentiation, while retaining potential for further retrotransposition.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Long Interspersed Nucleotide Elements/genetics , Neurogenesis/genetics , Cells, Cultured , DNA Methylation/genetics , Embryo, Mammalian/metabolism , Germ Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Long Interspersed Nucleotide Elements/physiology , Neurons/metabolism , Promoter Regions, Genetic/genetics , Retroelements/genetics
4.
Elife ; 62017 08 14.
Article in English | MEDLINE | ID: mdl-28806172

ABSTRACT

Mobilization of retrotransposons to new genomic locations is a significant driver of mammalian genome evolution, but these mutagenic events can also cause genetic disorders. In humans, retrotransposon mobilization is mediated primarily by proteins encoded by LINE-1 (L1) retrotransposons, which mobilize in pluripotent cells early in development. Here we show that TEX19.1, which is induced by developmentally programmed DNA hypomethylation, can directly interact with the L1-encoded protein L1-ORF1p, stimulate its polyubiquitylation and degradation, and restrict L1 mobilization. We also show that TEX19.1 likely acts, at least in part, through promoting the activity of the E3 ubiquitin ligase UBR2 towards L1-ORF1p. Moreover, loss of Tex19.1 increases L1-ORF1p levels and L1 mobilization in pluripotent mouse embryonic stem cells, implying that Tex19.1 prevents de novo retrotransposition in the pluripotent phase of the germline cycle. These data show that post-translational regulation of L1 retrotransposons plays a key role in maintaining trans-generational genome stability in mammals.


Subject(s)
Long Interspersed Nucleotide Elements , Mouse Embryonic Stem Cells/physiology , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Recombination, Genetic , Animals , Gene Knockout Techniques , Mice , Nuclear Proteins/genetics , Protein Binding , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
5.
Cell ; 161(2): 228-39, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25860606

ABSTRACT

Somatic LINE-1 (L1) retrotransposition during neurogenesis is a potential source of genotypic variation among neurons. As a neurogenic niche, the hippocampus supports pronounced L1 activity. However, the basal parameters and biological impact of L1-driven mosaicism remain unclear. Here, we performed single-cell retrotransposon capture sequencing (RC-seq) on individual human hippocampal neurons and glia, as well as cortical neurons. An estimated 13.7 somatic L1 insertions occurred per hippocampal neuron and carried the sequence hallmarks of target-primed reverse transcription. Notably, hippocampal neuron L1 insertions were specifically enriched in transcribed neuronal stem cell enhancers and hippocampus genes, increasing their probability of functional relevance. In addition, bias against intronic L1 insertions sense oriented relative to their host gene was observed, perhaps indicating moderate selection against this configuration in vivo. These experiments demonstrate pervasive L1 mosaicism at genomic loci expressed in hippocampal neurons.


Subject(s)
Hippocampus/cytology , Long Interspersed Nucleotide Elements , Mosaicism , Neurons/cytology , Genetic Variation , Humans , Neurogenesis , Polymerase Chain Reaction , Tissue Banks
6.
Bioessays ; 36(5): 475-81, 2014 May.
Article in English | MEDLINE | ID: mdl-24615986

ABSTRACT

Gene retrocopies are generated by reverse transcription and genomic integration of mRNA. As such, retrocopies present an important exception to the central dogma of molecular biology, and have substantially impacted the functional landscape of the metazoan genome. While an estimated 8,000-17,000 retrocopies exist in the human genome reference sequence, the extent of variation between individuals in terms of retrocopy content has remained largely unexplored. Three recent studies by Abyzov et al., Ewing et al. and Schrider et al. have exploited 1,000 Genomes Project Consortium data, as well as other sources of whole-genome sequencing data, to uncover novel gene retrocopies. Here, we compare the methods and results of these three studies, highlight the impact of retrocopies in human diversity and genome evolution, and speculate on the potential for somatic gene retrocopies to impact cancer etiology and genetic diversity among individual neurons in the mammalian brain.


Subject(s)
Gene Duplication , Genes , Genetic Variation , Genetics, Population , Genome, Human/genetics , RNA, Messenger/genetics , Sequence Analysis, DNA/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL