Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(12): e54, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38808669

ABSTRACT

Chromatin three-dimensional (3D) organization inside the cell nucleus determines the separation of euchromatin and heterochromatin domains. Their segregation results in the definition of active and inactive chromatin compartments, whereby the local concentration of associated proteins, RNA and DNA results in the formation of distinct subnuclear structures. Thus, chromatin domains spatially confined in a specific 3D nuclear compartment are expected to share similar epigenetic features and biochemical properties, in terms of accessibility and solubility. Based on this rationale, we developed the 4f-SAMMY-seq to map euchromatin and heterochromatin based on their accessibility and solubility, starting from as little as 10 000 cells. Adopting a tailored bioinformatic data analysis approach we reconstruct also their 3D segregation in active and inactive chromatin compartments and sub-compartments, thus recapitulating the characteristic properties of distinct chromatin states. A key novelty of the new method is the capability to map both the linear segmentation of open and closed chromatin domains, as well as their compartmentalization in one single experiment.


Subject(s)
Euchromatin , Heterochromatin , Heterochromatin/chemistry , Heterochromatin/metabolism , Euchromatin/chemistry , Euchromatin/metabolism , Euchromatin/genetics , Humans , Chromatin/chemistry , Chromatin/metabolism , Chromatin/genetics , Cell Nucleus/genetics , Cell Nucleus/chemistry , Cell Nucleus/metabolism , DNA/chemistry , DNA/metabolism , Animals
2.
Nucleic Acids Res ; 52(11): 6171-6182, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38597676

ABSTRACT

Chromatin modifiers are emerging as major determinants of many types of cancers, including Anaplastic Large Cell Lymphomas (ALCL), a family of highly heterogeneous T-cell lymphomas for which therapeutic options are still limited. HELLS is a multifunctional chromatin remodeling protein that affects genomic instability by participating in the DNA damage response. Although the transcriptional function of HELLS has been suggested, no clues on how HELLS controls transcription are currently available. In this study, by integrating different multi-omics and functional approaches, we characterized the transcriptional landscape of HELLS in ALCL. We explored the clinical impact of its transcriptional program in a large cohort of 44 patients with ALCL. We demonstrated that HELLS, loaded at the level of intronic regions of target promoters, facilitates RNA Polymerase II (RNAPII) progression along the gene bodies by reducing the persistence of co-transcriptional R-loops and promoting DNA damage resolution. Importantly, selective knockdown of HELLS sensitizes ALCL cells to different chemotherapeutic agents, showing a synergistic effect. Collectively, our work unveils the role of HELLS in acting as a gatekeeper of ALCL genome stability providing a rationale for drug design.


Subject(s)
DNA Damage , R-Loop Structures , RNA Polymerase II , Transcription, Genetic , Humans , RNA Polymerase II/metabolism , Cell Line, Tumor , Genomic Instability/genetics , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/pathology , Lymphoma, Large-Cell, Anaplastic/metabolism , Gene Expression Regulation, Neoplastic , DNA Helicases/genetics , DNA Helicases/metabolism , Promoter Regions, Genetic , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/metabolism , Lymphoma, T-Cell/pathology
3.
Cancer Res ; 84(1): 133-153, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37855660

ABSTRACT

Enhancers are noncoding regulatory DNA regions that modulate the transcription of target genes, often over large distances along with the genomic sequence. Enhancer alterations have been associated with various pathological conditions, including cancer. However, the identification and characterization of somatic mutations in noncoding regulatory regions with a functional effect on tumorigenesis and prognosis remain a major challenge. Here, we present a strategy for detecting and characterizing enhancer mutations in a genome-wide analysis of patient cohorts, across three lung cancer subtypes. Lung tissue-specific enhancers were defined by integrating experimental data and public epigenomic profiles, and the genome-wide enhancer-target gene regulatory network of lung cells was constructed by integrating chromatin three-dimensional architecture data. Lung cancers possessed a similar mutation burden at tissue-specific enhancers and exons but with differences in their mutation signatures. Functionally relevant alterations were prioritized on the basis of the pathway-level integration of the effect of a mutation and the frequency of mutations on individual enhancers. The genes enriched for mutated enhancers converged on the regulation of key biological processes and pathways relevant to tumor biology. Recurrent mutations in individual enhancers also affected the expression of target genes, with potential relevance for patient prognosis. Together, these findings show that noncoding regulatory mutations have a potential relevance for cancer pathogenesis and can be exploited for patient classification. SIGNIFICANCE: Mapping enhancer-target gene regulatory interactions and analyzing enhancer mutations at the level of their target genes and pathways reveal convergence of recurrent enhancer mutations on biological processes involved in tumorigenesis and prognosis.


Subject(s)
Gene Regulatory Networks , Lung Neoplasms , Humans , Enhancer Elements, Genetic/genetics , Lung Neoplasms/genetics , Mutation , Carcinogenesis/genetics
4.
Nucleic Acids Res ; 50(22): 12809-12828, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36537238

ABSTRACT

Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.


Subject(s)
Alternative Splicing , Cadherins , Histones , Chromatin , Histones/metabolism , Lysine/metabolism , RNA/metabolism , Cadherins/genetics , Humans , Induced Pluripotent Stem Cells , Neural Stem Cells , Autism Spectrum Disorder/genetics
5.
Cancers (Basel) ; 13(13)2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34283087

ABSTRACT

The onset of chemo-resistant recurrence represents the principal cause of high-grade serous ovarian carcinoma (HGSOC) death. HGSOC masses are characterized by a hypoxic microenvironment, which contributes to the development of this chemo-resistant phenotype. Hypoxia regulated-miRNAs (HRMs) represent a molecular response of cancer cells to hypoxia and are involved in tumor progression. We investigated the expression of HRMs using miRNA expression data from a total of 273 advanced-stage HGSOC samples. The miRNAs associated with chemoresistance and survival were validated by RT-qPCR and target prediction, and comparative pathway analysis was conducted for target gene identification. Analysis of miRNA expression profiles indicated miR-23a-3p and miR-181c-5p over-expression as associated with chemoresistance and poor PFS. RT-qPCR data confirmed upregulation of miR-23a-3p in tumors from chemoresistant HGSOC patients and its significant association with shorter PFS. In silico miR-23a-3p target prediction and comparative pathway analysis identified platinum drug resistance as the pathway with the highest number of miR-23a-3p target genes. Among them, APAF-1 emerged as the most promising, being downregulated in platinum-resistant patients and in HGSOC chemo-resistant cells. These results highlight miR-23a-3p as a potential biomarker for HGSOC platinum response and prognosis and the miR23a-3p/APAF1 axis as a possible target to overcome platinum-resistance.

7.
Nucleic Acids Res ; 49(17): e97, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34197622

ABSTRACT

A growing amount of evidence in literature suggests that germline sequence variants and somatic mutations in non-coding distal regulatory elements may be crucial for defining disease risk and prognostic stratification of patients, in genetic disorders as well as in cancer. Their functional interpretation is challenging because genome-wide enhancer-target gene (ETG) pairing is an open problem in genomics. The solutions proposed so far do not account for the hierarchy of structural domains which define chromatin three-dimensional (3D) architecture. Here we introduce a change of perspective based on the definition of multi-scale structural chromatin domains, integrated in a statistical framework to define ETG pairs. In this work (i) we develop a computational and statistical framework to reconstruct a comprehensive map of ETG pairs leveraging functional genomics data; (ii) we demonstrate that the incorporation of chromatin 3D architecture information improves ETG pairing accuracy and (iii) we use multiple experimental datasets to extensively benchmark our method against previous solutions for the genome-wide reconstruction of ETG pairs. This solution will facilitate the annotation and interpretation of sequence variants in distal non-coding regulatory elements. We expect this to be especially helpful in clinically oriented applications of whole genome sequencing in cancer and undiagnosed genetic diseases research.


Subject(s)
Algorithms , Chromatin/genetics , Computational Biology/methods , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Cell Line , Cell Line, Tumor , Cells, Cultured , Chromatin/metabolism , Epistasis, Genetic , Gene Expression Profiling/methods , Genome-Wide Association Study/methods , Genomics/methods , Humans , Neoplasms/genetics , Neoplasms/pathology , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Quantitative Trait Loci/genetics
8.
J Immunother Cancer ; 9(5)2021 05.
Article in English | MEDLINE | ID: mdl-33963009

ABSTRACT

BACKGROUND: Pediatric high-grade gliomas (pHGGs) are among the most common and incurable malignant neoplasms of childhood. Despite aggressive, multimodal treatment, the outcome of children with high-grade gliomas has not significantly improved over the past decades, prompting the development of innovative approaches. METHODS: To develop an effective treatment, we aimed at improving the suboptimal antitumor efficacy of oncolytic adenoviruses (OAs) by testing the combination with a gene-therapy approach using a bispecific T-cell engager (BiTE) directed towards the erythropoietin-producing human hepatocellular carcinoma A2 receptor (EphA2), conveyed by a replication-incompetent adenoviral vector (EphA2 adenovirus (EAd)). The combinatorial approach was tested in vitro, in vivo and thoroughly characterized at a molecular level. RESULTS: After confirming the relevance of EphA2 as target in pHGGs, documenting a significant correlation with worse clinical outcome of the patients, we showed that the proposed strategy provides significant EphA2-BiTE amplification and enhanced tumor cell apoptosis, on coculture with T cells. Moreover, T-cell activation through an agonistic anti-CD28 antibody further increased the activation/proliferation profiles and functional response against infected tumor cells, inducing eradication of highly resistant, primary pHGG cells. The gene-expression analysis of tumor cells and T cells, after coculture, revealed the importance of both EphA2-BiTE and costimulation in the proposed system. These in vitro observations translated into significant tumor control in vivo, in both subcutaneous and a more challenging orthotopic model. CONCLUSIONS: The combination of OA and EphA2-BiTE gene therapy strongly enhances the antitumor activity of OA, inducing the eradication of highly resistant tumor cells, thus supporting the clinical translation of the approach.


Subject(s)
Adenoviridae/genetics , Antibodies, Bispecific/genetics , Brain Neoplasms/therapy , Genetic Therapy , Glioma/therapy , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Receptor, EphA2/genetics , Adenoviridae/metabolism , Adenoviridae/pathogenicity , Animals , Antibodies, Bispecific/metabolism , Apoptosis , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/virology , Cell Line, Tumor , Coculture Techniques , Cytotoxicity, Immunologic , Female , Gene Expression Regulation, Neoplastic , Genetic Vectors , Glioma/genetics , Glioma/metabolism , Glioma/virology , Humans , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred NOD , Mice, SCID , Neoplasm Grading , Oncolytic Viruses/metabolism , Oncolytic Viruses/pathogenicity , Receptor, EphA2/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays
9.
Theranostics ; 11(6): 2987-2999, 2021.
Article in English | MEDLINE | ID: mdl-33456584

ABSTRACT

Survival rates of oral squamous cell carcinoma (OSCC) remained substantially unchanged over the last decades; thus, additional prognostic tools are strongly needed. Salivary miRNAs have emerged as excellent non-invasive cancer biomarker candidates, but their association with OSCC prognosis has not been investigated yet. In this study, we analyzed global salivary miRNA expression in OSCC patients and healthy controls, with the aim to define its diagnostic and prognostic potential. Methods: Saliva was collected from patients with newly diagnosed untreated primary OSCC and healthy controls. Global profiling of salivary miRNAs was carried out through a microarray approach, while signature validation was performed by quantitative real-time PCR (RT-qPCR). A stringent statistical approach for microarray and RT-qPCR data normalization was applied. The diagnostic performance of miRNAs and their correlation with OSCC prognosis were comprehensively analyzed. Results: In total, 25 miRNAs emerged as differentially expressed between OSCC patients and healthy controls and, among them, seven were significantly associated with disease-free survival (DFS). miR-106b-5p, miR-423-5p and miR-193b-3p were expressed at high levels in saliva of OSCC patients and their combination displays the best diagnostic performance (ROC - AUC = 0.98). Moreover, high expression of miR-423-5p was an independent predictor of poor DFS, when included in multivariate survival analysis with the number of positive lymph nodes - the only significant clinical prognosticator. Finally, we observed a significant decrease in miR-423-5p expression in matched post-operative saliva samples, suggesting its potential cancer-specific origin. Conclusion: Salivary miRNAs identified in our cohort of patients show to be accurate in OSCC detection and to effectively stratify patients according to their likelihood of relapse. These results, if validated in an independent set of patients, could be particularly promising for screening/follow-up of high-risk populations and useful for preoperative prognostic assessment.


Subject(s)
Carcinoma, Squamous Cell/genetics , MicroRNAs/genetics , Mouth Neoplasms/genetics , Saliva/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/pathology , Case-Control Studies , Cohort Studies , Disease-Free Survival , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Genome-Wide Association Study/methods , Humans , Male , Microarray Analysis/methods , Middle Aged , Mouth Neoplasms/pathology , Prognosis , Young Adult
10.
Nat Commun ; 10(1): 5355, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31767860

ABSTRACT

In Drosophila melanogaster the single male chromosome X undergoes an average twofold transcriptional upregulation for balancing the transcriptional output between sexes. Previous literature hypothesised that a global change in chromosome structure may accompany this process. However, recent studies based on Hi-C failed to detect these differences. Here we show that global conformational differences are specifically present in the male chromosome X and detectable using Hi-C data on sex-sorted embryos, as well as male and female cell lines, by leveraging custom data analysis solutions. We find the male chromosome X has more mid-/long-range interactions. We also identify differences at structural domain boundaries containing BEAF-32 in conjunction with CP190 or Chromator. Weakening of these domain boundaries in male chromosome X co-localizes with the binding of the dosage compensation complex and its co-factor CLAMP, reported to enhance chromatin accessibility. Together, our data strongly indicate that chromosome X dosage compensation affects global chromosome structure.


Subject(s)
Chromatin/genetics , Dosage Compensation, Genetic , Drosophila melanogaster/genetics , X Chromosome/genetics , Animals , Chromatin/chemistry , Chromatin/metabolism , Chromosomes, Insect/genetics , Drosophila Proteins/genetics , Female , Genes, X-Linked/genetics , Male , Molecular Conformation , Transcriptional Activation
11.
PLoS Comput Biol ; 15(10): e1007357, 2019 10.
Article in English | MEDLINE | ID: mdl-31652275

ABSTRACT

Topological gene-set analysis has emerged as a powerful means for omic data interpretation. Although numerous methods for identifying dysregulated genes have been proposed, few of them aim to distinguish genes that are the real source of perturbation from those that merely respond to the signal dysregulation. Here, we propose a new method, called SourceSet, able to distinguish between the primary and the secondary dysregulation within a Gaussian graphical model context. The proposed method compares gene expression profiles in the control and in the perturbed condition and detects the differences in both the mean and the covariance parameters with a series of likelihood ratio tests. The resulting evidence is used to infer the primary and the secondary set, i.e. the genes responsible for the primary dysregulation, and the genes affected by the perturbation through network propagation. The proposed method demonstrates high specificity and sensitivity in different simulated scenarios and on several real biological case studies. In order to fit into the more traditional pathway analysis framework, SourceSet R package also extends the analysis from a single to multiple pathways and provides several graphical outputs, including Cytoscape visualization to browse the results.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Algorithms , Gene Regulatory Networks/genetics , Humans , Models, Theoretical , Normal Distribution , Sensitivity and Specificity , Software , Transcriptome/genetics
12.
Bioinformatics ; 33(3): 456-457, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28172414

ABSTRACT

Summary: In the omic era, one of the main aims is to discover groups of functionally related genes that drive the difference between different conditions. To this end, a plethora of potentially useful multivariate statistical approaches has been proposed, but their evaluation is hindered by the absence of a gold standard. Here, we propose a method for simulating biological data ­ gene expression, RPKM/FPKM or protein abundances ­ from two conditions, namely, a reference condition and a perturbation of it. Our approach is built upon probabilistic graphical models and is thus especially suited for testing topological approaches. Availability and Implementation: The simPATHy is an R package, it is open source and freely available on CRAN. Contacts: elisa.salviato.2@studenti.unipd.it or chiara.romualdi@unipd.it Supplementary Information: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Gene Expression Regulation , Models, Biological , Models, Statistical , Software , Computer Simulation
13.
Cancer Lett ; 388: 320-327, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28017893

ABSTRACT

High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecologic neoplasm, with five-year survival rate below 30%. Early disease detection is of utmost importance to improve HGSOC cure rate. Sera from 168 HGSOC patients and 65 healthy controls were gathered together from two independent collections and stratified into a training set, for miRNA marker identification, and a validation set, for data validation. An innovative statistical approach for microarray data normalization was developed to identify differentially expressed miRNAs. Signature validation in both the training and validation sets was performed by quantitative Real Time PCR (RT-qPCR). In both the training and validation sets, miR-1246, miR-595 and miR-2278 emerged significantly over expressed in the sera of HGSOC patients compared to healthy controls. Receiver Operating Characteristic curve analysis revealed miR-1246 as the best diagnostic biomarker, with a sensitivity of 87%, a specificity of 77% and an accuracy of 84%. This study is the first step in the identification of circulating miRNAs with diagnostic relevance for HGSOC. According to its specificity and sensitivity, circulating miR-1246 levels are worthy to be further investigated as potential diagnostic biomarker for HGSOC.


Subject(s)
Biomarkers, Tumor/genetics , Cystadenocarcinoma, Serous/genetics , MicroRNAs/genetics , Ovarian Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Cystadenocarcinoma, Serous/epidemiology , Cystadenocarcinoma, Serous/pathology , Female , Humans , Middle Aged , Neoplasm Grading , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/pathology , Reproducibility of Results , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL