Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
ACS Nano ; 18(23): 15229-15238, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38820532

Photon upconversion via triplet-triplet annihilation (TTA-UC) provides a pathway to overcoming the thermodynamic efficiency limits in single-junction solar cells by allowing the harvesting of sub-bandgap photons. Here, we use mixed halide perovskite nanocrystals (CsPbX3, X = Br/I) as triplet sensitizers, with excitation transfer to 9,10-diphenylanthracene (DPA) and/or 9,10-bis[(triisopropylsilyl)ethynyl]anthracene (TIPS-An) which act as the triplet annihilators. We observe that the upconversion efficiency is five times higher with the combination of both annihilators in a composite system compared to the sum of the individual single-acceptor systems. Our work illustrates the importance of using a composite system of annihilators to enhance TTA upconversion, demonstrated in a perovskite-sensitized system, with promise for a range of potential applications in light-harvesting, biomedical imaging, biosensing, therapeutics, and photocatalysis.

2.
J Am Chem Soc ; 145(39): 21330-21343, 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37738152

The family of hybrid organic-inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-Ci molecules, where Ci indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-Ci)2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic-inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-Ci molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10-100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic-organic electronic properties through the wide range of functionalities available in the world of organics.

3.
ACS Appl Nano Mater ; 6(16): 14980-14990, 2023 Aug 25.
Article En | MEDLINE | ID: mdl-37649835

We report a facile, solvent-free surfactant-dependent mechanochemical synthesis of highly luminescent CsPbBr3 nanocrystals (NCs) and study their scintillation properties. A small amount of surfactant oleylamine (OAM) plays an important role in the two-step ball milling method to control the size and emission properties of the NCs. The solid-state synthesized perovskite NCs exhibit a high photoluminescence quantum yield (PLQY) of up to 88% with excellent stability. CsPbBr3 NCs capped with different amounts of surfactant were dispersed in toluene and mixed with polymethyl methacrylate (PMMA) polymer and cast into scintillator discs. With increasing concentration of OAM during synthesis, the PL yield of CsPbBr3/PMMA nanocomposite was increased, which is attributed to reduced NC aggregation and PL quenching. We also varied the perovskite loading concentration in the nanocomposite and studied the resulting emission properties. The most intense PL emission was observed from the 2% perovskite-loaded disc, while the 10% loaded disc exhibited the highest radioluminescence (RL) emission from 50 kV X-rays. The strong RL yield may be attributed to the deep penetration of X-rays into the composite, combined with the large interaction cross-section of the X-rays with the high-Z atoms within the NCs. The nanocomposite disc shows an intense RL emission peak centered at 536 nm and a fast RL decay time of 29.4 ns. Further, we have demonstrated the X-ray imaging performance of a 10% CsPbBr3 NC-loaded nanocomposite disc.

4.
ACS Energy Lett ; 8(6): 2728-2737, 2023 Jun 09.
Article En | MEDLINE | ID: mdl-37324541

All-perovskite tandem solar cells beckon as lower cost alternatives to conventional single-junction cells. Solution processing has enabled rapid optimization of perovskite solar technologies, but new deposition routes will enable modularity and scalability, facilitating technology adoption. Here, we utilize 4-source vacuum deposition to deposit FA0.7Cs0.3Pb(IxBr1-x)3 perovskite, where the bandgap is changed through fine control over the halide content. We show how using MeO-2PACz as a hole-transporting material and passivating the perovskite with ethylenediammonium diiodide reduces nonradiative losses, resulting in efficiencies of 17.8% in solar cells based on vacuum-deposited perovskites with a bandgap of 1.76 eV. By similarly passivating a narrow-bandgap FA0.75Cs0.25Pb0.5Sn0.5I3 perovskite and combining it with a subcell of evaporated FA0.7Cs0.3Pb(I0.64Br0.36)3, we report a 2-terminal all-perovskite tandem solar cell with champion open circuit voltage and efficiency of 2.06 V and 24.1%, respectively. This dry deposition method enables high reproducibility, opening avenues for modular, scalable multijunction devices even in complex architectures.

5.
Anal Chem ; 91(4): 2947-2954, 2019 02 19.
Article En | MEDLINE | ID: mdl-30652483

Resistive pulse sensors (RPSs) provide detailed characterization of materials from the nanoparticle up to large biological cells on a particle-to-particle basis. During the RPS experiment, particles pass through a channel or pore that conducts ions, and the change in the ionic current versus time is monitored. The change in current during each translocation, also known as a "pulse", is dependent on the ratio of the particle and channel dimensions. Here we present a facile and rapid method for producing flow-RPSs that do not require lithographic processes. The additively manufactured sensor has channel dimensions that can be easily controlled. In addition, the fabrication process allows the sensor to be quickly assembled, disassembled, cleaned, and reused. Furthermore, the RPS can be created with a direct interface for fluidic pumps or imaging window for complementary optical microscopy. We present experiments and simulations of the RPS, showing how the pulse shapes are dependent on the channel morphology and how the device can count and size particles across a range of flow rates and ionic strengths. The use of pressure-driven fluid flow through the device allowed a rapid characterization of particles down to concentrations as low as 1 × 10-3 particles per mL, which equated to one event per second.


Microfluidic Analytical Techniques , Nanoparticles/chemistry , Microfluidic Analytical Techniques/instrumentation , Osmolar Concentration , Particle Size , Surface Properties
...