Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
J Anim Sci Technol ; 66(4): 645-662, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39165738

ABSTRACT

Climate change, driven by the natural process of global warming, is a worldwide issue of significant concern because of its adverse effects on livestock output. The increasing trend of environmental temperature surging has drastically affected meat production and meat product quality, hence result in economic losses for the worldwide livestock business. Due to the increasing greenhouse gas emissions, the situation would get prolonged, and heat exposure-related stress is expected to worsen. Heat exposure causes metabolic and physiological disruptions in livestock. Ruminants and monogastric animals are very sensitive to heat stress due to their rate of metabolism, development, and higher production levels. Before slaughter, intense hot weather triggers muscle glycogen breakdown, producing pale, mushy, and exudative meat with less water-holding capacity. Animals exposed to prolonged high temperatures experience a decrease in their muscle glycogen reserves, producing dry, dark, and complex meat with elevated final pH and increased water-holding capacity. Furthermore, heat stress also causes oxidative stresses, especially secondary metabolites from lipid oxidation, severely affects the functionality of proteins, oxidation of proteins, decreasing shelf life, and food safety by promoting exfoliation and bacterial growth. Addressing the heat-related issues to retain the sustainability of the meat sector is an essential task that deserves an inclusive and comprehensive approach. Considering the intensity of the heat stress effects, this review has been designed primarily to examine the consequences of hot environment temperatures and related stresses on the quality and safety of meat and secondarily focus on cutting edge technology to reduce or alleviate the situational impact.

2.
Sci Rep ; 14(1): 17893, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095369

ABSTRACT

Diabetes mellitus (DM) is a rapidly prevailing disease throughout the world that poses boundless risk factors linked to several health problems. Vildagliptin is the standard dipeptidyl peptidase-4 (DPP-4) inhibitor type of medication that is used for the treatment of diabetes anti-hyperglycemic agent (anti-diabetic drug). The current study aimed to synthesize vildagliptin-loaded ZnO NPs for enhanced efficacy in terms of increased retention time minimizing side effects and increased hypoglycemic effects. Herein, Zinc Oxide (ZnO) nanoparticles (NPs) were constructed by precipitation method then the drug vildagliptin was loaded and drug loading efficiency was estimated by the HPLC method. X-ray diffraction analysis (XRD), UV-vis spectroscopy, FT-IR, scanning electron microscope (SEM), and EDX analysis were performed for the characterization of synthesized vildagliptin-loaded ZnO NPs. The UV-visible spectrum shows a distinct peak at 363 nm which confirms the creation of ZnO NPs and SEM showed mono-dispersed sphere-shaped NPs. EDX analysis shows the presence of desired elements along with the elemental composition. The physio-sorption studies, which used adsorption isotherms to assess adsorption capabilities, found that the Freundlich isotherm model explains the data very well and fits best. The maximum adsorption efficiency of 58.83% was obtained. Further, In vitro, anti-diabetic activity was evaluated by determining the α-amylase and DPP IV inhibition activity of the product formed. The formulation gave maximum inhibition of 82.06% and 94.73% of α-amylase and DPP IV respectively. While at 1000 µg/ml concentration with IC50 values of 24.11 µg/per ml and 42.94 µg/ml. The inhibition of α-amylase can be ascribed to the interactive effect of ZnO NPs and vildagliptin.


Subject(s)
Hypoglycemic Agents , Nanoparticles , Vildagliptin , Zinc Oxide , Vildagliptin/chemistry , Vildagliptin/pharmacology , Zinc Oxide/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Nanoparticles/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , X-Ray Diffraction , Drug Carriers/chemistry , Spectroscopy, Fourier Transform Infrared , Nitriles/chemistry , Humans
3.
Food Sci Anim Resour ; 44(4): 899-911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974732

ABSTRACT

This research investigated the synergic outcome of high intensity ultrasound (HIU) treatment and wet-dry combined aging (WDCA) on physiochemical characteristics and lipid oxidation during refrigerated storage to ameliorate pork meat's quality and shelf life. The CIE b* values, cooking loss (CL %), and pH of the HIU treated samples were higher than those of the control over the aging period. They were significantly (p<0.05) modified by the aging period and ultrasound (US) treatment. However, the released water (RW %) and moisture were not significantly influenced by US treatment (p>0.05). The Warner-Bratzler shear force of HIU-treated samples was lower over control values except in 7-14 d, and it showed a significant difference between control and US treatment according to the significance of HIU (p<0.05). The thiobarbituric acid reactive substance of HIU-treated samples was significantly higher (p<0.05) than control values over the aging period. These results suggested that HIU treatment and WDCA showed a synergistic effect of maximizing the tenderness, but lipid oxidation was higher than before ultrasonic treatment. In agreement with this, the most favorable approach would involve implementing wet aging for a period of two weeks followed by dry aging for a period not exceeding one week after the application of HIU.

4.
Expert Opin Drug Discov ; 19(8): 991-1009, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38898679

ABSTRACT

BACKGROUND: Despite the progress in comprehending molecular design principles and biochemical processes associated with thrombin inhibition, there is a crucial need to optimize efforts and curtail the recurrence of synthesis-testing cycles. Nitrogen and N-heterocycles are key features of many anti-thrombin drugs. Hence, a pragmatic analysis of nitrogen and N-heterocycles in thrombin inhibitors is important throughout the drug discovery pipeline. In the present work, the authors present an analysis with a specific focus on understanding the occurrence and distribution of nitrogen and selected N-heterocycles in the realm of thrombin inhibitors. RESEARCH DESIGN AND METHODS: A dataset comprising 4359 thrombin inhibitors is used to scrutinize various categories of nitrogen atoms such as ring, non-ring, aromatic, and non-aromatic. In addition, selected aromatic and aliphatic N-heterocycles have been analyzed. RESULTS: The analysis indicates that ~62% of thrombin inhibitors possess five or fewer nitrogen atoms. Substituted N-heterocycles have a high occurrence, like pyrrolidine (23.24%), pyridine (20.56%), piperidine (16.10%), thiazole (9.61%), imidazole (7.36%), etc. in thrombin inhibitors. CONCLUSIONS: The majority of active thrombin inhibitors contain nitrogen atoms close to 5 and a combination of N-heterocycles like pyrrolidine, pyridine, piperidine, etc. This analysis provides crucial insights to optimize the transformation of lead compounds into potential anti-thrombin inhibitors.


Subject(s)
Antithrombins , Heterocyclic Compounds , Nitrogen , Thrombin , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Humans , Antithrombins/pharmacology , Thrombin/antagonists & inhibitors , Drug Discovery/methods , Drug Design , Structure-Activity Relationship
5.
ACS Omega ; 9(23): 24538-24545, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882065

ABSTRACT

Polymeric materials play a vital role in high-voltage insulation, but their insulating properties can deteriorate over time, leading to insulation failures. The presence of voids resulting from manufacturing defects or external stresses can create a highly divergent field, further contributing to this issue. However, certain polymers, such as polyurethane (PU), possess self-healing properties that enable them to repair these voids and restore a uniform electric field distribution, thereby ensuring the reliability of the insulation. Surprisingly, the potential of PU as an insulating material in high-voltage applications remains unexplored. However, the self-healing capability of PU decreases with an increase in the hardness of the material. Therefore, in this study, the dielectric breakdown properties of PU with different levels of hardness, rated on the Shore scale as 40° (soft), 70° (medium), and 90° (hard), were investigated. The AC and DC dielectric breakdown characteristics of these PU variants and dielectric spectra were examined. Additionally, the study explores the relationship between the dielectric properties and the hardness of the material. Our findings revealed that the dielectric breakdown strength of PU increases as the material's hardness is increased under both AC and DC electric stress. However, this may come at the cost of reduced self-healing capabilities of PU. Therefore, there is a need to balance the hardness of the material with its ability to recover from breakdown events. The findings from this study can be useful for researchers and engineers, as they offer valuable insights into the dielectric properties of PU at various hardness levels.

6.
Food Sci Anim Resour ; 44(2): 284-298, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38764516

ABSTRACT

Restructured meat (RM) products are gaining importance as an essential component of the meat industry due to consumers' interest in health benefits. RM products imply the binding or holding of meat, meat by-products, and vegetable proteins together to form a meat product with meat's sensory and textural properties. RM products provide consumers with diversified preferences like the intake of low salt, low fat, antioxidants, and high dietary fiber in meat products. From the point of environmental sustainability, RM may aid in combining underutilized products and low-valued meat by adequately utilizing them instead of dumping them as waste material. RM processing technique might also help develop diversified and new hybrid meat products. It is crucial to have more knowledge on the quality issues, selection of binding agents, their optimum proportion, and finally, the ideal processing techniques. It is observed in this study that the most crucial feature of RM could be its healthy products with reduced fat content, which aligns with the preferences of health-conscious consumers who seek low-fat, low-salt, high-fiber options with minimal synthetic additives. This review briefly overviews RM and the factors affecting the quality and shelf life. Moreover, it discusses the recent studies on binding agents in processing RM products. Nonetheless, the recent advancements in processing and market scenarios have been summarized to better understand future research needs. The purpose of this review was to bring light to the ways of sustainable and economical food production.

7.
ACS Omega ; 9(14): 16759-16774, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617692

ABSTRACT

Cancer, a life-disturbing and lethal disease with a high global impact, causes significant economic, social, and health challenges. Breast cancer refers to the abnormal growth of cells originating from breast tissues. Hormone-dependent forms of breast cancer, such as those influenced by estrogen, prompt the exploration of estrogen receptors as targets for potential therapeutic interventions. In this study, we conducted e-QSAR molecular docking and molecular dynamics analyses on a diverse set of inhibitors targeting estrogen receptor alpha (ER-α). The e-QSAR model is based on a genetic algorithm combined with multilinear regression analysis. The newly developed model possesses a balance between predictive accuracy and mechanistic insights adhering to the OECD guidelines. The e-QSAR model pointed out that sp2-hybridized carbon and nitrogen atoms are important atoms governing binding profiles. In addition, a specific combination of H-bond donors and acceptors with carbon, nitrogen, and ring sulfur atoms also plays a crucial role. The results are supported by molecular docking, MD simulations, and X-ray-resolved structures. The novel results could be useful for future drug development for ER-α.

8.
Sensors (Basel) ; 24(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339662

ABSTRACT

Conventional air quality monitoring has been traditionally carried out in a few fixed places with expensive measuring equipment. This results in sparse spatial air quality data, which do not represent the real air quality of an entire area, e.g., when hot spots are missing. To obtain air quality data with higher spatial and temporal resolution, this research focused on developing a low-cost network of cloud-based air quality measurement platforms. These platforms should be able to measure air quality parameters including particulate matter (PM10, PM2.5, PM1) as well as gases like NO, NO2, O3, and CO, air temperature, and relative humidity. These parameters were measured every second and transmitted to a cloud server every minute on average. The platform developed during this research used one main computer to read the sensor data, process it, and store it in the cloud. Three prototypes were tested in the field: two of them at a busy traffic site in Stuttgart, Marienplatz and one at a remote site, Ötisheim, where measurements were performed near busy railroad tracks. The developed platform had around 1500 € in materials costs for one Air Quality Sensor Node and proved to be robust during the measurement phase. The notion of employing a Proportional-Integral-Derivative (PID) controller for the efficient working of a dryer that is used to reduce the negative effect of meteorological parameters such as air temperature and relative humidity on the measurement results was also pursued. This is seen as one way to improve the quality of data captured by low-cost sensors.

9.
J Pak Med Assoc ; 74(1 (Supple-2)): S8-S13, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38385464

ABSTRACT

OBJECTIVE: To assess the link between tumour necrosis factor-alpha -308 guanine/adenine polymorphism and tumour necrosis factor-alpha plasma levels in relation to obstructive sleep apnoea. METHODS: The cross-sectional study was conducted from December 2018 to March 2021 at the sleep clinic of Dow University Hospital, Karachi, on obstructive sleep apnoea patients and healthy controls. Epworth Sleep Scale score was used to determine daytime sleepiness, while full-night polysomnography was carried out for obstructive sleep apnoea confirmation and categorisation according to severity. Blood sample collection was followed by deoxyribonucleic acid extraction and plasma tumour necrosis factor-alpha measurement using enzyme-linked immunosorbent assay. Genotype distribution and allelic frequency were assessed. Data was analysed using SPSS 20. RESULTS: Out of the 225 subjects, with a mean age of 47.68±9.88 years, 132 (58.7%) were males, and 93 (41.3%) were females. Among them, 150 (66.7%) were patients, and 75 (33.3%) were controls. Heterozygous tumour necrosis factor-alpha -308 guanine/adenine genotypes were significantly higher among the patients (p<0.05). Minor allele - 308 adenine showed an association with obstructive sleep apnoea, its severity, higher tumour necrosis factor-alpha levels, neck circumference, excessive daytime sleepiness and the presence of hypertension (p<0.05). CONCLUSIONS: Tumour necrosis factor-alpha -308 adenine allele and higher tumour necrosis factor-alpha levels were found to be linked with obstructive sleep apnoea. The polymorphism also showed an association with hypertension in obstructive sleep apnoea patients.


Subject(s)
Disorders of Excessive Somnolence , Hypertension , Sleep Apnea, Obstructive , Tumor Necrosis Factor-alpha , Adult , Female , Humans , Male , Middle Aged , Adenine , Cross-Sectional Studies , Disorders of Excessive Somnolence/complications , Guanine , Hypertension/complications , Pakistan/epidemiology , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/complications , Tumor Necrosis Factor-alpha/genetics
10.
J Biomol Struct Dyn ; : 1-31, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385447

ABSTRACT

A lysine-specific demethylase is an enzyme that selectively eliminates methyl groups from lysine residues. KDM5A, also known as JARID1A or RBP2, belongs to the KDM5 Jumonji histone demethylase subfamily. To identify novel molecules that interact with the LSD5A receptor, we created a quantitative structure-activity relationship (QSAR) model. A group of 435 compounds was used in a study of the quantitative relationship between structure and activity to guess the IC50 values for blocking LASD5A. We used a genetic algorithm-multilinear regression-based quantitative structure-activity connection model to forecast the bioactivity (PIC50) of 1615 food and drug administration pharmaceuticals from the zinc database with the goal of repurposing clinically used medications. We used molecular docking, molecular dynamic simulation modelling, and molecular mechanics generalised surface area analysis to investigate the molecule's binding mechanism. A genetic algorithm and multi-linear regression method were used to make six variable-based quantitative structure-activity relationship models that worked well (R2 = 0.8521, Q2LOO = 0.8438, and Q2LMO = 0.8414). ZINC000000538621 was found to be a new hit against LSD5A after a quantitative structure-activity relationship-based virtual screening of 1615 zinc food and drug administration compounds. The docking analysis revealed that the hit molecule 11 in the KDM5A binding pocket adopted a conformation similar to the pdb-6bh1 ligand (docking score: -8.61 kcal/mol). The results from molecular docking and the quantitative structure-activity relationship were complementary and consistent. The most active lead molecule 11, which has shown encouraging results, has good absorption, distribution, metabolism, and excretion (ADME) properties, and its toxicity has been shown to be minimal. In addition, the MTT assay of ZINC000000538621 with MCF-7 cell lines backs up the in silico studies. We used molecular mechanics generalise borne surface area analysis and a 200-ns molecular dynamics simulation to find structural motifs for KDM5A enzyme interactions. Thus, our strategy will likely expand food and drug administration molecule repurposing research to find better anticancer drugs and therapies.Communicated by Ramaswamy H. Sarma.

11.
Plant Physiol Biochem ; 207: 108387, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38266565

ABSTRACT

Plants have developed diverse physical and chemical defence mechanisms to ensure their continued growth and well-being in challenging environments. Plants also have evolved intricate molecular mechanisms to regulate their responses to biotic stress. Non-coding RNA (ncRNA) plays a crucial role in this process that affects the expression or suppression of target transcripts. While there have been numerous reviews on the role of molecules in plant biotic stress, few of them specifically focus on how plant ncRNAs enhance resistance through various mechanisms against different pathogens. In this context, we explored the role of ncRNA in exhibiting responses to biotic stress endogenously as well as cross-kingdom regulation of transcript expression. Furthermore, we address the interplay between ncRNAs, which can act as suppressors, precursors, or regulators of other ncRNAs. We also delve into the regulation of ncRNAs in response to attacks from different organisms, such as bacteria, viruses, fungi, nematodes, oomycetes, and insects. Interestingly, we observed that diverse microorganisms interact with distinct ncRNAs. This intricacy leads us to conclude that each ncRNA serves a specific function in response to individual biotic stimuli. This deeper understanding of the molecular mechanisms involving ncRNAs in response to biotic stresses enhances our knowledge and provides valuable insights for future research in the field of ncRNA, ultimately leading to improvements in plant traits.


Subject(s)
Nematoda , Plants , Animals , Plants/genetics , RNA, Untranslated/genetics , Bacteria , Stress, Physiological/genetics , RNA, Plant/genetics
12.
PLoS One ; 19(1): e0286848, 2024.
Article in English | MEDLINE | ID: mdl-38227609

ABSTRACT

Several studies have revealed that SARS-CoV-2 damages brain function and produces significant neurological disability. The SARS-CoV-2 coronavirus, which causes COVID-19, may infect the heart, kidneys, and brain. Recent research suggests that monoamine oxidase B (MAO-B) may be involved in metabolomics variations in delirium-prone individuals and severe SARS-CoV-2 infection. In light of this situation, we have employed a variety of computational to develop suitable QSAR model using PyDescriptor and genetic algorithm-multilinear regression (GA-MLR) models (R2 = 0.800-793, Q2LOO = 0.734-0.727, and so on) on the data set of 106 molecules whose anti-SARS-CoV-2 activity was empirically determined. QSAR models generated follow OECD standards and are predictive. QSAR model descriptors were also observed in x-ray-resolved structures. After developing a QSAR model, we did a QSAR-based virtual screening on an in-house database of 200 compounds and found a potential hit molecule. The new hit's docking score (-8.208 kcal/mol) and PIC50 (7.85 M) demonstrated a significant affinity for SARS-CoV-2's main protease. Based on post-covid neurodegenerative episodes in Alzheimer's and Parkinson's-like disorders and MAO-B's role in neurodegeneration, the initially disclosed hit for the SARS-CoV-2 main protease was repurposed against the MAO-B receptor using receptor-based molecular docking, which yielded a docking score of -12.0 kcal/mol. This shows that the compound that inhibits SARS-CoV-2's primary protease may bind allosterically to the MAO-B receptor. We then did molecular dynamic simulations and MMGBSA tests to confirm molecular docking analyses and quantify binding free energy. The drug-receptor complex was stable during the 150-ns MD simulation. The first computational effort to show in-silico inhibition of SARS-CoV-2 Mpro and allosteric interaction of novel inhibitors with MAO-B in post-covid neurodegenerative symptoms and other disorders. The current study seeks a novel compound that inhibits SAR's COV-2 Mpro and perhaps binds MAO-B allosterically. Thus, this study will enable scientists design a new SARS-CoV-2 Mpro that inhibits the MAO-B receptor to treat post-covid neurological illness.


Subject(s)
COVID-19 , Nervous System Diseases , Humans , SARS-CoV-2/metabolism , Monoamine Oxidase/metabolism , Molecular Docking Simulation , Drug Discovery , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology
13.
Front Biosci (Landmark Ed) ; 29(1): 43, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38287835

ABSTRACT

BACKGROUND: Medicinal herbs are frequently used for the management of gastrointestinal disorders because they contain various compounds that can potentially amplify the intended therapeutic effects. Cuminaldehyde is a plant-based constituent found in oils derived from botanicals such as cumin, eucalyptus, myrrh, and cassia and is responsible for its health benefits. Despite the utilization of cuminaldehyde for several medicinal properties, there is currently insufficient scientific evidence to support its effectiveness in treating diarrhea. Hence, the present investigation was carried out to evaluate the antidiarrheal and antispasmodic efficacy of cuminaldehyde, with detailed pharmacodynamics explored. METHODS: An in vivo antidiarrheal test was conducted in mice following the castor oil-induced diarrhea model, while an isolated small intestine obtained from rats was used to evaluate the detailed mechanism(s) of antispasmodic effects. RESULTS: Cuminaldehyde, at 10 and 20 mg/kg, exhibited 60 and 80% protection in mice from episodic diarrhea compared to the saline control group, whereas this inhibitory effect was significantly reversed in the pretreated mice with glibenclamide, similar to cromakalim, an ATP-dependent K+ channel opener. In the ex vivo experiments conducted in isolated rat tissues, cuminaldehyde reversed the glibenclamide-sensitive low K+ (25 mM)-mediated contractions at significantly higher potency compared to its inhibitory effect against high K+ (80 mM), thus showing predominant involvement of ATP-dependent K+ activation followed by Ca++ channel inhibition. Cromakalim, a standard drug, selectively suppressed the glibenclamide-sensitive low K+-induced contractions, whereas no relaxation was observed against high K+, as expected. Verapamil, a Ca++ channel inhibitor, effectively suppressed both low and high K+-induced contractions with similar potency, as anticipated. At higher concentrations, the inhibitory effect of cuminaldehyde against Ca++ channels was further confirmed when the preincubated ileum tissues with cuminaldehyde (3 and 10 mM) in Ca++ free medium shifted CaCl2-mediated concentration-response curves (CRCs) towards the right with suppression of the maximum peaks, similar to verapamil, a standard Ca++ ion inhibitor. CONCLUSIONS: Present findings support the antidiarrheal and antispasmodic potential of cuminaldehyde, possibly by the predominant activation of ATP-dependent K+ channels followed by voltage-gated Ca++ inhibition. However, further in-depth assays are recommended to know the precise mechanism and to elucidate additional unexplored mechanism(s) if involved.


Subject(s)
Antidiarrheals , Benzaldehydes , Cymenes , Parasympatholytics , Rats , Mice , Animals , Antidiarrheals/adverse effects , Parasympatholytics/adverse effects , Cromakalim/adverse effects , Glyburide/adverse effects , Plant Extracts/pharmacology , Jejunum , Diarrhea/chemically induced , Diarrhea/drug therapy , Verapamil/adverse effects , Adenosine Triphosphate
14.
J Biomol Struct Dyn ; 42(5): 2550-2569, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37144753

ABSTRACT

Due to the high rates of drug development failure and the massive expenses associated with drug discovery, repurposing existing drugs has become more popular. As a result, we have used QSAR modelling on a large and varied dataset of 657 compounds in an effort to discover both explicit and subtle structural features requisite for ACE2 inhibitory activity, with the goal of identifying novel hit molecules. The QSAR modelling yielded a statistically robust QSAR model with high predictivity (R2tr=0.84, R2ex=0.79), previously undisclosed features, and novel mechanistic interpretations. The developed QSAR model predicted the ACE2 inhibitory activity (PIC50) of 1615 ZINC FDA compounds. This led to the detection of a PIC50 of 8.604 M for the hit molecule (ZINC000027990463). The hit molecule's docking score is -9.67 kcal/mol (RMSD 1.4). The hit molecule revealed 25 interactions with the residue ASP40, which defines the N and C termini of the ectodomain of ACE2. The HIT molecule conducted more than thirty contacts with water molecules and exhibited polar interaction with the ARG522 residue coupled with the second chloride ion, which is 10.4 nm away from the zinc ion. Both molecular docking and QSAR produced comparable findings. Moreover, MD simulation and MMGBSA studies verified docking analysis. The MD simulation showed that the hit molecule-ACE2 receptor complex is stable for 400 ns, suggesting that repurposed hit molecule 3 is a viable ACE2 inhibitor.


Subject(s)
Angiotensin-Converting Enzyme 2 , Quantitative Structure-Activity Relationship , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Computer Simulation , Molecular Docking Simulation , Molecular Dynamics Simulation , Zinc
15.
Cureus ; 15(11): e48821, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38106701

ABSTRACT

India experiences a significant amount of morbidity and mortality due to gliomas particularly glioblastoma multiforme (GBM), which ranks among the worst cancers. Oxaloacetate (OAA) is a human keto acid that is central to cellular metabolism; it has been recognized by the US FDA for use in GBM patients, triggering a review to revisit the cellular mechanism of its therapeutic action. Various cellular and molecular studies have proposed that instead of fueling the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), gliomas prefer to use glycolysis (the Warburg effect) to fuel macromolecules for the synthesis of nucleotides, fatty acids, and amino acids for the accelerated mitosis. A study found that oxaloacetate (OAA) inhibits human lactate dehydrogenase A (LDHA) in cancer cells, reversing the Warburg effect. Studies revealed that OAA supplementation reduced Warburg glycolysis, improved neuronal cell bioenergetics, and triggered brain mitochondrial biogenesis, thereby enhancing the efficacy of standard treatment. Similarly, OAA has been found in preclinical investigations to be able to decrease tumor development and survival rates by blocking the conversion of glutamine to alpha-ketoglutarate (alpha-KG) in the TCA cycle and lowering nicotinamide adenine dinucleotide phosphate (NADPH) levels. OAA is a safe adjuvant that has the potential to be an effective therapy in gliomas when combined with temozolomide (TMZ) chemotherapy and routine surgery.

16.
Physiol Plant ; 175(5): e13994, 2023.
Article in English | MEDLINE | ID: mdl-37882277

ABSTRACT

Plant lipocalins perform diverse functions. Recently, allene oxide cyclase, a lipocalin family member, has been shown to co-express with vindoline pathway genes in Catharanthus roseus under various biotic/abiotic stresses. This brought focus to another family member, a temperature-induced lipocalin (CrTIL), which was selected for full-length cloning, tissue-specific expression profiling, in silico characterization, and upstream genomic region analysis for cis-regulatory elements. Stress-mediated variations in CrTIL expression were reflected as disturbances in cell membrane integrity, assayed through measurement of electrolyte leakage and lipid peroxidation product, MDA, which implicated the role of CrTIL in maintaining cell membrane integrity. For ascertaining the function of CrTIL in maintaining membrane stability and elucidating the relationship between CrTIL expression and vindoline content, if any, a direct approach was adopted, whereby CrTIL was transiently silenced and overexpressed in C. roseus. CrTIL silencing and overexpression confirmed its role in the maintenance of membrane integrity and indicated an inverse relationship of its expression with vindoline content. GFP fusion-based subcellular localization indicated membrane localization of CrTIL, which was in agreement with its role in maintaining membrane integrity. Altogether, the role of CrTIL in maintaining membrane structure has possible implications for the intracellular sequestration, storage, and viability of vindoline.


Subject(s)
Catharanthus , Catharanthus/genetics , Catharanthus/metabolism , Temperature , Vinblastine/chemistry , Vinblastine/metabolism , Lipocalins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism
17.
Biomed Res Int ; 2023: 7278070, 2023.
Article in English | MEDLINE | ID: mdl-37727279

ABSTRACT

Infectious diseases have been tremendously increasing as the organisms of even normal flora become opportunistic and cause an infection, and Escherichia coli (E. coli EQ101) is one of them. Urinary tract infections are caused by various microorganisms, but Escherichia coli is the primary cause of almost 70%-90% of all UTIs. It has multiple strains, possessing diverse virulence factors, contributing to its pathogenicity. Furthermore, these virulent strains also can cause overlapping pathogenesis by sharing resistance and virulence factors among each other. The current study is aimed at analyzing the genetic variants associated with multi-drug-resistant (MDR) E. coli using the whole genome sequencing platform. The study includes 100 uropathogenic Escherichia coli (UPEC) microorganisms obtained from urine samples out of which 44% were multi-drug-resistant (MDR) E. coli. Bacteria have been isolated and antimicrobial susceptibility test (AST) was determined by disk diffusion method on the Mueller-Hinton agar plate as recommended by the Clinical and Laboratory Standards Institute (CLSI) 2020, and one isolate has been selected which shows resistance to most of the antibiotics, and that isolate has been analyzed by whole genome sequencing (WGS), accompanied by data and phylogenetic analysis, respectively. Organisms were showing resistance against ampicillin (10 µg), cefixime (5 µg), ceftriaxone (30 µg), nalidixic acid (30 µg), ciprofloxacin (5 µg), and ofloxacin (5 µg) on antimicrobial susceptibility test. WGS were done on selected isolate which identified 25 virulence genes (air, astA, chuA, fyuA, gad, hra, iha, irp2, iss, iucC, iutA, kpsE, kpsMII_K1, lpfA, mchF, ompT, papA_F43, sat, senB, sitA, terC, traT, usp, vat, and yfcV) and seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA). Among resistance genes, seven genes (TolC, emrR, evgA, qacEdelta1, H-NS, cpxA, and mdtM) were identified to be involved in antibiotic efflux, three AMR genes (aadA5, mphA, and CTX-M-15) were involved in antibiotic inactivation, and two genes (sul1 and dfrA14) were found to be involved in antibiotic drug replacement. Our data identified antibiotic resistance and virulence genes of the isolate. We suggest further research work to establish region-based resistance profile in comparison with the global resistance pattern.


Subject(s)
Escherichia coli Proteins , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Uropathogenic Escherichia coli/genetics , Pakistan , Phylogeny , Drug Resistance, Bacterial/genetics , Urinary Tract Infections/drug therapy , Membrane Transport Proteins , Escherichia coli Proteins/genetics
18.
Cureus ; 15(7): e41447, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37546034

ABSTRACT

Burnout and depression are global problems affecting healthcare providers, especially those working in stressful departments such as emergency departments (EDs) and critical care units (CCUs). However, pooled data analysis comparing healthcare providers operating in the ED and CCU is yet to be conducted. Therefore, this meta-analysis was systematically conducted to investigate and compare the prevalence of burnout and depression among emergency medicine (EM) and critical care medicine (CCM) professionals. We systematically searched for articles related to our research topic using the database search method and manual search method, which involved reviewing the reference lists of articles from electronic databases for additional studies. After screening the literature from the databases using the eligibility criteria, a quality appraisal using the Newcastle-Ottawa scale was performed on the eligible studies. In addition, a meta-analysis using the Review Manager software was performed to investigate the prevalence rates of burnout and depression. A total of 10 studies with 1,353 EM and 1,250 CCM professionals were included for analysis in the present study. The pooled analysis did not establish any considerable differences between EM and CCM healthcare workers on the prevalence of high emotional exhaustion (EE) (odds ratio (OR) = 1.01; 95% confidence interval (CI) = 0.46-2.19; p = 0.98), high depersonalization (OR = 1.16; 95% CI = 0.61-2.21; p = 0.64), low personal accomplishment (PA) (OR = 0.87; 95% CI = 0.67 - 1.12; p = 0.28), and depression (OR = 1.20; 95% CI = 0.74-1.95; p = 0.45). Moreover, pooled data showed no considerable differences in EE scores (mean difference (MD) = -1.07; 95% CI = -4.24-2.09; p = 0.51) and depersonalization scores (MD = -0.31; 95% CI = -1.35-0.73; p = 0.56). However, EM healthcare workers seemed to have considerably lower PA scores than their CCM counterparts (MD = 0.12; 95% CI = 0.08-0.16; p < 0.00001). No considerable difference was recorded in the prevalence of burnout and depression between EM and CCM healthcare workers. However, our findings suggest that EM professionals have lower PA scores than CCM professionals; therefore, more attention should be paid to the mental health of EM professionals to improve their PA.

19.
Cureus ; 15(7): e41876, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37581156

ABSTRACT

Paracetamol (acetaminophen) is an extensively used analgesic for acute and chronic pain management. Currently, paracetamol is manufactured for oral, rectal, and intravenous (IV) use. Research has shown varied results on the analgesic properties of IV paracetamol compared to oral and rectal paracetamol; however, research on the same doses of paracetamol is limited. Therefore, this review was constructed to explore the analgesic properties of IV paracetamol compared with oral and rectal paracetamol administered in equivalent doses. A broad and thorough literature search was performed on five electronic databases, including PubMed, ScienceDirect, Medline, Scopus, and Google Scholar. Statistical analysis of all outcomes in our review was then performed using the Review Manager software. Outcomes were categorized as primary (pain relief and time to request rescue analgesia) and secondary (adverse events after analgesia). An extensive quality appraisal was also done using the Review Manager software's Cochrane risk of bias tool. The literature survey yielded 2,945 articles, of which 12 were used for review and analysis. The pooled analysis for patients undergoing surgical procedures showed that IV paracetamol had statistically similar postoperative pain scores at two (mean difference (MD) = -0.14; 95% confidence interval (CI) -0.58-0.29; p = 0.51), 24 (MD = 0.09; 95% CI = -0.02-0.21; p = 0.12), and 48 (MD = 0.04; 95% CI = -0.08-0.16; p = 0.52) hours as oral paracetamol. Similarly, the data on time to rescue analgesia showed no considerable difference between the IV and oral paracetamol groups (MD = -1.58; 95% CI = -5.51-2.35; p = 0.43). On the other hand, the pooled analysis for patients presenting non-surgical acute pain showed no significant difference in the mean pain scores between patients treated with IV and oral paracetamol (MD = -0.35; 95% CI = -2.19-1.48; p = 0.71). Furthermore, a subgroup analysis of analgesia-related adverse events showed that the incidences of vomiting/nausea and pruritus did not differ between patients receiving IV and oral paracetamol (odds ratio (OR) = 0.71; 95% CI = 0.45-1.11; p = 0.13 and OR = 0.48; 95% CI = 0.18-1.29; p = 0.05, respectively). A review of information from two trials comparing equal doses of IV and rectal paracetamol suggested that the postoperative pain scores were statistically similar between the groups. IV paracetamol is not superior to oral or rectal paracetamol administered in equal doses. Therefore, we cannot recommend or refute IV paracetamol as the first-line analgesia for acute and postoperative pain.

20.
Front Microbiol ; 14: 1168653, 2023.
Article in English | MEDLINE | ID: mdl-37465026

ABSTRACT

The oil sands mining operations in Alberta have produced billions of m3 of tailings which must be reclaimed and integrated into various mine closure landforms, including terrestrial landforms. Microorganisms play a central role in nutrient cycling during the reclamation of disturbed landscapes, contributing to successful vegetation restoration and long-term sustainability. However, microbial community succession and response in reconstructed and revegetated tailings remain largely unexplored. This study aimed to monitor the structural and functional responses of microbial communities in tailings subjected to different capping and vegetation strategies over two growing seasons (GS). To achieve this, a column-based greenhouse experiment was conducted to investigate microbial communities in tailings that were capped with a layer (10 or 30 cm) of peat-mineral mix (PMM) and planted with either upland or wetland communities. DNA metabarcoding analysis of the bacterial 16S rRNA gene and fungal ITS2 region as well as shotgun metagenomics were used to asses the impact of treatments on microbial taxonomy and functions, respectively. Results showed that tailings microbial diversity and community composition changed considerably after two GS compared to baseline samples, while communities in the PMM capping layer were much more stable. Likewise, several microbial functions were significantly enriched in tailings after two GS. Interestingly, the impact of capping on bacterial communities in tailings varied depending on the plant community, leading to a higher number of differentially abundant taxa and to a decrease in Shannon diversity and evenness in the upland treatment but not in the wetland treatment. Moreover, while capping in the presence of wetland vegetation increased the energy-related metabolic functions (carbon, nitrogen, and sulfur), these functions were depleted by capping in the upland treatment. Fungi represented a small proportion of the microbial community in tailings, but the relative abundance of several taxa changed over time, while the capping treatments favored the growth of some beneficial taxa, notably the root endophyte Serendipita, in both upland and wetland columns. The results suggest that selecting the right combination of capping material and vegetation type may contribute to improve below-ground microbial processes and sustain plant growth in harsh environments such as oil sands tailings.

SELECTION OF CITATIONS
SEARCH DETAIL