ABSTRACT
Venezuelan equine encephalitis virus (VEEV) belongs to the genus Alphavirus, family Togaviridae. VEEV infection is characterized by extensive inflammation and studies from other laboratories implicated an involvement of the NF-κB cascade in the in vivo pathology. Initial studies indicated that at early time points of VEEV infection, the NF-κB complex was activated in cells infected with the TC-83 strain of VEEV. One upstream kinase that contributes to the phosphorylation of p65 is the IKKß component of the IKK complex. Our previous studies with Rift valley fever virus, which exhibited early activation of the NF-κB cascade in infected cells, had indicated that the IKKß component underwent macromolecular reorganization to form a novel low molecular weight form unique to infected cells. This prompted us to investigate if the IKK complex undergoes a comparable macromolecular reorganization in VEEV infection. Size-fractionated VEEV infected cell extracts indicated a macromolecular reorganization of IKKß in VEEV infected cells that resulted in formation of lower molecular weight complexes. Well-documented inhibitors of IKKß function, BAY-11-7082, BAY-11-7085 and IKK2 compound IV, were employed to determine whether IKKß function was required for the production of infectious progeny virus. A decrease in infectious viral particles and viral RNA copies was observed with inhibitor treatment in the attenuated and virulent strains of VEEV infection. In order to further validate the requirement of IKKß for VEEV replication, we over-expressed IKKß in cells and observed an increase in viral titers. In contrast, studies carried out using IKKß(-/-) cells demonstrated a decrease in VEEV replication. In vivo studies demonstrated that inhibitor treatment of TC-83 infected mice increased their survival. Finally, proteomics studies have revealed that IKKß may interact with the viral protein nsP3. In conclusion, our studies have revealed that the host IKKß protein may be critically involved in VEEV replication.
Subject(s)
Encephalitis Virus, Venezuelan Equine/physiology , Encephalomyelitis, Venezuelan Equine/metabolism , I-kappa B Kinase/metabolism , Animals , Cell Line , Down-Regulation/drug effects , Encephalomyelitis, Venezuelan Equine/pathology , Guinea Pigs , Host-Pathogen Interactions , Humans , Mice , NF-kappa B/metabolism , Neurons/virology , Nitriles/pharmacology , Signal Transduction/drug effects , Sulfones/pharmacology , Viral Load/drug effects , Viral Proteins/metabolism , Virus Replication/drug effectsABSTRACT
Alphaviruses, including Venezuelan Equine Encephalitis Virus (VEEV), cause disease in both equine and humans that exhibit overt encephalitis in a significant percentage of cases. Features of the host immune response and tissue-specific responses may contribute to fatal outcomes as well as the development of encephalitis. It has previously been shown that VEEV infection of mice induces transcription of pro-inflammatory cytokines genes (e.g., IFN-γ, IL-6, IL-12, iNOS and TNF-α) within 6 h. GSK-3ß is a host protein that is known to modulate pro-inflammatory gene expression and has been a therapeutic target in neurodegenerative disorders such as Alzheimer's. Hence inhibition of GSK-3ß in the context of encephalitic viral infections has been useful in a neuroprotective capacity. Small molecule GSK-3ß inhibitors and GSK-3ß siRNA experiments indicated that GSK-3ß was important for VEEV replication. Thirty-eight second generation BIO derivatives were tested and BIOder was found to be the most potent inhibitor, with an IC(50) of â¼0.5 µM and a CC(50) of >100 µM. BIOder was a more potent inhibitor of GSK-3ß than BIO, as demonstrated through in vitro kinase assays from uninfected and infected cells. Size exclusion chromatography experiments demonstrated that GSK-3ß is found in three distinct complexes in VEEV infected cells, whereas GSK-3ß is only present in one complex in uninfected cells. Cells treated with BIOder demonstrated an increase in the anti-apoptotic gene, survivin, and a decrease in the pro-apoptotic gene, BID, suggesting that modulation of pro- and anti-apoptotic genes contributes to the protective effect of BIOder treatment. Finally, BIOder partially protected mice from VEEV induced mortality. Our studies demonstrate the utility of GSK-3ß inhibitors for modulating VEEV infection.