Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Nutr Food Res ; 68(5): e2300363, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38299443

ABSTRACT

SCOPE: Understanding the mode-of-action by which fermented dairy consumption influences health is of interest. The aim of this study is to elucidate the impact of the chemical-physical properties of the dairy matrix and postbiotic effects on the metabolomics response to fermented dairy consumption. METHODS AND RESULTS: Hundred males (Body Mass Index (BMI) 28.0-45.0 kg m-2, waist circumference ≥ 102 cm) are included in the study. During a 16-week intervention, the study subjects are instructed to consume 400 g per day of either 1) milk, 2) yogurt, 3) heat-treated yogurt, or 4) chemically acidified milk as part of their habitual diet. Nuclear Magnetic Resonance (NMR)-based metabolomics is conducted on plasma, urine, and fecal samples collected before and after the intervention. Both consumption of acidified milk and heat-treated yogurt resulted in changes in the fecal metabolome including decreases in the level of amino acids (leucine, valine, and threonine), and the branched-chain fatty acid (BCFA) isobutyrate that indicated an altered protein putrefaction, and proteolytic metabolism in the gut. In the plasma metabolome, an increased citrate is found for yogurt consumption. No difference in the urine metabolome is found. CONCLUSIONS: Our metabolomics analyses indicate that consumption of heat-treated yogurt and acidified milk exerted similar effects on the metabolic activity in the gut as yogurt consumption.


Subject(s)
Dairy Products , Milk , Male , Humans , Animals , Diet , Feces , Yogurt , Metabolome
2.
Clin Nutr ; 43(2): 534-542, 2024 02.
Article in English | MEDLINE | ID: mdl-38232682

ABSTRACT

BACKGROUND & AIMS: In recent years, epidemiological studies have reported links between the consumption of fermented dairy products, such as yogurt, and health; however, evidence from human intervention trials is scarce and inconsistent. We aimed to investigate the effect of consumption of four different types of dairy products (two fermented and two non-fermented) on liver fat (primary outcome) and metabolic risk markers in males with abdominal obesity. METHODS: In this parallel randomized controlled trial with four arms, 100 males aged 30-70 years, with body mass index 28.0-45.0 kg/m2, and waist circumference ≥102 cm underwent a 16-weeks intervention where they were instructed to consume 400 g/day of either milk, yogurt, heat-treated yogurt, or acidified milk as part of their habitual diet. Liver fat was measured by magnetic resonance imaging. RESULTS: In the complete case analyses (n = 80), no effects of the intervention or differences between groups were detected in anthropometry or body composition including liver fat. Moreover, no effects were detected in inflammatory markers. Main effects of time were detected in blood pressure (decrease; P < 0.001), insulin (decrease; P < 0.001), C-peptide (decrease; P = 0.040), homeostatic model assessment for insulin resistance (decrease; P < 0.001), total cholesterol (decrease; P = 0.016), low-density lipoprotein (decrease; P = 0.033), high-density lipoprotein (decrease; P = 0.006), and alanine transaminase (decrease; P = 0.019). Interactions between group and time failed to reach significance. CONCLUSIONS: In conclusion, findings from our study do not confirm that fermented yogurt products are superior in reducing liver fat or improving metabolic risk markers compared to non-fermented milk products. In fact, all intervention products (both fermented yogurt products and non-fermented milk products) did not affect liver fat and caused largely similar modest favorable changes in some metabolic risk markers. The study was registered at www. CLINICALTRIALS: gov (# NCT04755530).


Subject(s)
Cultured Milk Products , Obesity, Abdominal , Male , Humans , Animals , Risk Factors , Obesity/metabolism , Dairy Products , Milk , Liver/metabolism , Yogurt
3.
Curr Obes Rep ; 10(2): 125-133, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33580876

ABSTRACT

PURPOSE OF REVIEW: Understanding the effects of dietary manipulations on intrahepatic triglyceride (IHTG) balance will have important implications for the prevention and treatment of non-alcoholic fatty liver disease (NAFLD). RECENT FINDINGS: Reducing calorie intake to induce weight loss is the most potent intervention to decrease IHTG. Carbohydrate restriction during the initial stages of weight loss may be particularly beneficial, but at later stages, the amount of weight loss predominates over diet composition. By contrast, during weight stability, restricting calories from fat seems to be optimal for depleting liver fat. The degree of dietary fat saturation and the glycemic index of the carbohydrate have inconsistent effects on IHTG. Recently, the matrix of some foods (e.g., dairy) has been inversely associated with NAFLD. Dietary macronutrients differ in their effects on liver fat depending on the energy balance and the matrix of the food in which they are consumed. Therefore, investigations into dietary approaches for managing NAFLD should shift their perspective from that of isolated nutrients to that of whole foods and diets and include useful mechanistic insights.


Subject(s)
Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism , Diet , Dietary Fats/metabolism , Energy Intake , Energy Metabolism , Humans , Liver/metabolism , Nutrients , Weight Loss
4.
Br J Nutr ; 122(4): 468-479, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31242952

ABSTRACT

A low-energy diet (LED) is an effective approach to induce a rapid weight loss in individuals with overweight. However, reported disproportionally large losses of fat-free mass (FFM) after an LED trigger the question of adequate protein content. Additionally, not all individuals have the same degree of weight loss success. After an 8-week LED providing 5020 kJ/d for men and 4184 kJ/d for women (84/70 g protein/d) among overweight and obese adults, we aimed to investigate the relationship between protein intake relative to initial FFM and proportion of weight lost as FFM as well as the individual characteristics associated with weight loss success. We assessed all outcomes baseline and after the LED. A total of 286 participants (sixty-four men and 222 women) initiated the LED of which 82 % completed and 70 % achieved a substantial weight loss (defined as ≥8 %). Protein intake in the range 1·0-1·6 g protein/d per kg FFM at baseline for men and 1·1-2·2 g protein/d per kg FFM at baseline for women was not associated with loss of FFM (P = 0·632). Higher Three-Factor Eating Questionnaire (TFEQ) hunger at baseline and reductions in TFEQ disinhibition and hunger during the LED were associated with larger weight loss (all P ≤ 0·020); whereas lower sleep quality at baseline predicted less successful weight loss using intention to treat analysis (P = 0·021), possibly driven by those dropping out (n 81, P = 0·067 v. completers: n 198, P = 0·659). Thus, the protein intakes relative to initial FFM were sufficient for maintenance of FFM and specific eating behaviour characteristics were associated with weight loss success.


Subject(s)
Body Composition , Diet, Reducing , Obesity/diet therapy , Overweight/diet therapy , Weight Loss , Absorptiometry, Photon , Adult , Aged , Body Weight , Caloric Restriction , Dietary Proteins/administration & dosage , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL