Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 289
1.
medRxiv ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38766048

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. KEY TAKEAWAY/TAKE-HOME MESSAGES: HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.

3.
iScience ; 27(5): 109719, 2024 May 17.
Article En | MEDLINE | ID: mdl-38706848

Zoonotic events by sarbecoviruses have sparked an epidemic (severe acute respiratory syndrome coronavirus [SARS-CoV]) and a pandemic (SARS-CoV-2) in the past two decades. The continued risk of spillovers from animals to humans is an ongoing threat to global health and a pan-sarbecovirus vaccine would be an important contribution to pandemic preparedness. Here, we describe multivalent virosome-based vaccines that present stabilized spike proteins from four sarbecovirus strains, one from each clade. A cocktail of four monovalent virosomes or a mosaic virosome preparation induced broad sarbecovirus binding and neutralizing antibody responses in mice. Pre-existing immunity against SARS-CoV-2 and extending the intervals between immunizations enhanced antibody responses. These results should inform the development of a pan-sarbecovirus vaccine, as part of our efforts to prepare for and/or avoid a next pandemic.

4.
bioRxiv ; 2024 Mar 17.
Article En | MEDLINE | ID: mdl-38559180

Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Early antibody responses to easily accessible epitopes on these antigens are directed to non-neutralizing epitopes instead of bnAb epitopes. Autologous neutralizing antibody responses appear upon boosting once immunodominant epitopes are saturated. Here we report another type of antibody response that arises after repeated immunizations with HIV Env immunogens and present the structures of six anti-immune complexes discovered using polyclonal epitope mapping. The anti-immune complex antibodies target idiotopes composed of framework regions of antibodies bound to Env. This work sheds light on current vaccine development efforts for HIV, as well as for other pathogens, in which repeated exposure to antigen is required.

5.
NPJ Vaccines ; 9(1): 74, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582771

Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.

6.
Nat Commun ; 15(1): 3128, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605096

One of the strategies towards an effective HIV-1 vaccine is to elicit broadly neutralizing antibody responses that target the high HIV-1 Env diversity. Here, we present an HIV-1 vaccine candidate that consists of cobalt porphyrin-phospholipid (CoPoP) liposomes decorated with repaired and stabilized clade C HIV-1 Env trimers in a prefusion conformation. These particles exhibit high HIV-1 Env trimer decoration, serum stability and bind broadly neutralizing antibodies. Three sequential immunizations of female rabbits with CoPoP liposomes displaying a different clade C HIV-1 gp140 trimer at each dosing generate high HIV-1 Env-specific antibody responses. Additionally, serum neutralization is detectable against 18 of 20 multiclade tier 2 HIV-1 strains. Furthermore, the peak antibody titers induced by CoPoP liposomes can be recalled by subsequent heterologous immunization with Ad26-encoded membrane-bound stabilized Env antigens. Hence, a CoPoP liposome-based HIV-1 vaccine that can generate cross-clade neutralizing antibody immunity could potentially be a component of an efficacious HIV-1 vaccine.


AIDS Vaccines , HIV-1 , env Gene Products, Human Immunodeficiency Virus , Animals , Female , Rabbits , Antibodies, Neutralizing , HIV Antibodies , HIV Infections , Immunization , Liposomes , Phospholipids
7.
bioRxiv ; 2023 Nov 11.
Article En | MEDLINE | ID: mdl-37986885

A vaccine that can achieve protective immunity prior to sexual debut is critical to prevent the estimated 410,000 new HIV infections that occur yearly in adolescents. As children living with HIV can make broadly neutralizing antibody (bnAb) responses in plasma at a faster rate than adults, early childhood is an opportune window for implementation of a multi-dose HIV immunization strategy to elicit protective immunity prior to adolescence. Therefore, the goal of our study was to assess the ability of a B cell lineage-designed HIV envelope SOSIP to induce bnAbs in early life. Infant rhesus macaques (RMs) received either BG505 SOSIP or the germline-targeting BG505 GT1.1 SOSIP (n=5/group) with the 3M-052-SE adjuvant at 0, 6, and 12 weeks of age. All infant RMs were then boosted with the BG505 SOSIP at weeks 26, 52 and 78, mimicking a pediatric immunization schedule of multiple vaccine boosts within the first two years of life. Both immunization strategies induced durable, high magnitude binding antibodies and plasma autologous virus neutralization that primarily targeted the CD4-binding site (CD4bs) or C3/465 epitope. Notably, three BG505 GT1.1-immunized infants exhibited a plasma HIV neutralization signature reflective of VRC01-like CD4bs bnAb precursor development and heterologous virus neutralization. Finally, infant RMs developed precursor bnAb responses at a similar frequency to that of adult RMs receiving a similar immunization strategy. Thus, a multi-dose immunization regimen with bnAb lineage designed SOSIPs is a promising strategy for inducing protective HIV bnAb responses in childhood prior to adolescence when sexual HIV exposure risk begins.

9.
iScience ; 26(10): 108009, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37841584

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has remained a medical threat due to the evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants. A stabilized spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants, with COVA309-35 being the most potent against the autologous virus, as well as Omicron BA.1 and BA.2, and COVA309-22 having binding and neutralization activity against Omicron BA.4/5, BQ.1.1, and XBB.1. When combining the COVA309 mAbs as cocktails or bispecific antibodies, the breadth and potency were improved. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies.

10.
Nat Commun ; 14(1): 5603, 2023 09 12.
Article En | MEDLINE | ID: mdl-37699929

Lassa virus is a member of the Arenaviridae family, which causes human infections ranging from asymptomatic to severe hemorrhagic disease with a high case fatality rate. We have designed and generated lipid nanoparticle encapsulated, modified mRNA vaccines that encode for the wild-type Lassa virus strain Josiah glycoprotein complex or the prefusion stabilized conformation of the Lassa virus glycoprotein complex. Hartley guinea pigs were vaccinated with two 10 µg doses, 28 days apart, of either construct. Vaccination induced strong binding antibody responses, specific to the prefusion conformation of glycoprotein complex, which were significantly higher in the prefusion stabilized glycoprotein complex construct group and displayed strong Fc-mediated effects. However, Lassa virus-neutralizing antibody activity was detected in some but not all animals. Following the challenge with a lethal dose of the Lassa virus, all vaccinated animals were protected from death and severe disease. Although the definitive mechanism of protection is still unknown, and assessment of the cell-mediated immune response was not investigated in this study, these data demonstrate the promise of mRNA as a vaccine platform against the Lassa virus and that protection against Lassa virus can be achieved in the absence of virus-neutralizing antibodies.


Arenaviridae , Lassa virus , Humans , Guinea Pigs , Animals , Lassa virus/genetics , Antibodies, Neutralizing , mRNA Vaccines , Glycoproteins
11.
AIDS ; 37(15): 2297-2304, 2023 12 01.
Article En | MEDLINE | ID: mdl-37702421

OBJECTIVE: People with HIV rarely control viral replication after cessation of antiretroviral therapy (ART). We present a person with HIV with extraordinary posttreatment control (PTC) for over 23 years after temporary ART during acute HIV infection (AHI) leading to a new insight in factors contributing to PTC. DESIGN/METHODS: Viral reservoir was determined by HIV qPCR, Intact Proviral DNA Assay, and quantitative viral outgrowth assay. Viral replication kinetics were determined in autologous and donor PBMC. IgG levels directed against HIV envelope and neutralizing antibodies were measured. Immune phenotyping of T cells and HIV-specific T-cell responses were analyzed by flow cytometry. RESULTS: The case presented with AHI and a plasma viral load of 2.7 million copies/ml. ART was initiated 2 weeks after diagnosis and interrupted after 26 months. Replicating virus was isolated shortly after start ART. At 18 years after treatment interruption, HIV-DNA in CD4 + T cells and low levels of HIV-RNA in plasma (<5 copies/ml) were detectable. Stable HIV envelope glycoprotein-directed IgG was present during follow-up, but lacked neutralizing activity. Strong antiviral CD8 + T-cell responses, in particular targeting HIV-gag, were detected during 25 years follow-up. Moreover, we found a P255A mutation in an HLA-B∗44 : 02 restricted gag-epitope, which was associated with decreased replication. CONCLUSION: We describe an exceptional case of PTC, which is likely associated with sustained potent gag-specific CD8 + T-cell responses in combination with a replication attenuating escape mutation in gag. Understanding the initiation and preservation of the HIV-specific T-cell responses could guide the development of strategies to induce HIV control.


HIV Infections , Humans , Leukocytes, Mononuclear , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , DNA , Immunoglobulin G , Viral Load
12.
NPJ Vaccines ; 8(1): 148, 2023 Sep 30.
Article En | MEDLINE | ID: mdl-37777519

Understanding the balance between epitope shielding and accessibility on HIV-1 envelope (Env) trimers is essential to guide immunogen selection for broadly neutralizing antibody (bnAb) based vaccines. To investigate the antigenic space of Env immunogens, we created a strategy based on synthetic, high diversity, Designed Ankyrin Repeat Protein (DARPin) libraries. We show that DARPin Antigenicity Analysis (DANA), a purely in vitro screening tool, has the capability to extrapolate relevant information of antigenic properties of Env immunogens. DANA screens of stabilized, soluble Env trimers revealed that stronger trimer stabilization led to the selection of highly mutated DARPins with length variations and framework mutations mirroring observations made for bnAbs. By mimicking heterotypic prime-boost immunization regimens, DANA may be used to select immunogen combinations that favor the selection of trimer-reactive binders. This positions DANA as a versatile strategy for distilling fundamental antigenic features of immunogens, complementary to preclinical immunogenicity testing.

13.
Immunity ; 56(10): 2408-2424.e6, 2023 10 10.
Article En | MEDLINE | ID: mdl-37531955

V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.


AIDS Vaccines , HIV Infections , HIV-1 , Vaccines , Animals , Mice , HIV Antibodies , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Antigens, Viral , env Gene Products, Human Immunodeficiency Virus
14.
Nat Commun ; 14(1): 4036, 2023 07 07.
Article En | MEDLINE | ID: mdl-37419906

An effective preventive vaccine for hepatitis C virus (HCV) remains a major unmet need. Antigenic region 3 (AR3) on the E1E2 envelope glycoprotein complex overlaps with the CD81 receptor binding site and represents an important epitope for broadly neutralizing antibodies (bNAbs) and is therefore important for HCV vaccine design. Most AR3 bNAbs utilize the VH1-69 gene and share structural features that define the AR3C-class of HCV bNAbs. In this work, we identify recombinant HCV glycoproteins based on a permuted E2E1 trimer design that bind to the inferred VH1-69 germline precursors of AR3C-class bNAbs. When presented on nanoparticles, these recombinant E2E1 glycoproteins efficiently activate B cells expressing inferred germline AR3C-class bNAb precursors as B cell receptors. Furthermore, we identify critical signatures in three AR3C-class bNAbs that represent two subclasses of AR3C-class bNAbs that will allow refined protein design. These results provide a framework for germline-targeting vaccine design strategies against HCV.


Hepacivirus , Hepatitis C , Humans , Hepacivirus/genetics , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Viral Envelope Proteins , Hepatitis C/prevention & control , Recombinant Proteins
15.
NPJ Vaccines ; 8(1): 101, 2023 Jul 13.
Article En | MEDLINE | ID: mdl-37443366

Chemical cross-linking is used to stabilize protein structures with additional benefits of pathogen and toxin inactivation for vaccine use, but its use has been restricted by the potential for local or global structural distortion. This is of particular importance when the protein in question requires a high degree of structural conservation for inducing a biological outcome such as the elicitation of antibodies to conformationally sensitive epitopes. The HIV-1 envelope glycoprotein (Env) trimer is metastable and shifts between different conformational states, complicating its use as a vaccine antigen. Here we have used the hetero-bifunctional zero-length reagent 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimide (EDC) to cross-link two soluble Env trimers, selected well-folded trimer species using antibody affinity, and transferred this process to good manufacturing practice (GMP) for experimental medicine use. Cross-linking enhanced trimer stability to biophysical and enzyme attack. Cryo-EM analysis revealed that cross-linking retained the overall structure with root-mean-square deviations (RMSDs) between unmodified and cross-linked Env trimers of 0.4-0.5 Å. Despite this negligible distortion of global trimer structure, we identified individual inter-subunit, intra-subunit, and intra-protomer cross-links. Antigenicity and immunogenicity of the trimers were selectively modified by cross-linking, with cross-linked ConS retaining bnAb binding more consistently than ConM. Thus, the EDC cross-linking process improves trimer stability whilst maintaining protein folding, and is readily transferred to GMP, consistent with the more general use of this approach in protein-based vaccine design.

16.
Cell Rep ; 42(5): 112524, 2023 05 30.
Article En | MEDLINE | ID: mdl-37209096

Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences among phylogenetically distinct LASV lineages. Despite the sequence diversity of the GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VII, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of the GPC in complex with GP1-A-specific antibodies suggest their neutralization mechanisms. Finally, we present the isolation and characterization of a trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines.


Lassa Fever , Lassa virus , Humans , Antibodies, Neutralizing , Lassa Fever/prevention & control , Glycoproteins , Antigens, Viral
17.
iScience ; 26(4): 106540, 2023 Apr 21.
Article En | MEDLINE | ID: mdl-37063468

SARS-CoV-2 variants evade current monoclonal antibody therapies. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies taking advantage of the avidity and synergy provided by targeting different epitopes. Here we used controlled Fab-arm exchange to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader antibodies that also neutralize SARS-CoV. We demonstrated that the parental antibodies rely on avidity for neutralization using bsAbs containing one irrelevant Fab arm. Using mass photometry to measure the formation of antibody:spike complexes, we determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike, observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent agents to combat circulating and future SARS-like coronaviruses.

18.
Front Immunol ; 14: 1147953, 2023.
Article En | MEDLINE | ID: mdl-37090707

Several COVID-19 vaccine strategies utilizing new formulations for the induction of neutralizing antibodies (nAbs) and T cell immunity are still under evaluation in preclinical and clinical studies. Here we used Simian Immunodeficiency Virus (SIV)-based integrase defective lentiviral vector (IDLV) delivering different conformations of membrane-tethered Spike protein in the mouse immunogenicity model, with the aim of inducing persistent nAbs against multiple SARS-CoV-2 variants of concern (VoC). Spike modifications included prefusion-stabilizing double proline (2P) substitutions, mutations at the furin cleavage site (FCS), D614G mutation and truncation of the cytoplasmic tail (delta21) of ancestral and Beta (B.1.351) Spike, the latter mutation to markedly improve IDLV membrane-tethering. BALB/c mice were injected once with IDLV delivering the different forms of Spike or the recombinant trimeric Spike protein with 2P substitutions and FCS mutations in association with a squalene-based adjuvant. Anti-receptor binding domain (RBD) binding Abs, nAbs and T cell responses were detected up to six months from a single immunization with escalating doses of vaccines in all mice, but with different levels and kinetics. Results indicated that IDLV delivering the Spike protein with all the combined modifications, outperformed the other candidates in terms of T cell immunity and level of both binding Abs and nAbs soon after the single immunization and persistence over time, showing the best capacity to neutralize all formerly circulating VoC Alpha, Beta, Gamma and Delta. Although present, the lowest response was detected against Omicron variants (BA.1, BA.2 and BA.4/5), suggesting that the magnitude of immune evasion may be related to the higher genetic distance of Omicron as indicated by increased number of amino acid substitutions in Spike acquired during virus evolution.


COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , Spike Glycoprotein, Coronavirus/genetics , Integrases , COVID-19 Vaccines , SARS-CoV-2/genetics , Antibodies, Neutralizing , Disease Models, Animal , Mice, Inbred BALB C , Immunity
19.
Cell Rep Med ; 4(4): 101003, 2023 04 18.
Article En | MEDLINE | ID: mdl-37044090

Targeting germline (gl-) precursors of broadly neutralizing antibodies (bNAbs) is acknowledged as an important strategy for HIV-1 vaccines. The VRC01-class of bNAbs is attractive because of its distinct genetic signature. However, VRC01-class bNAbs often require extensive somatic hypermutation, including rare insertions and deletions. We describe a BG505 SOSIP trimer, termed GT1.2, to optimize binding to gl-CH31, the unmutated common precursor of the CH30-34 bNAb lineage that acquired a large CDRH1 insertion. The GT1.2 trimer activates gl-CH31 naive B cells in knock-in mice, and B cell responses could be matured by selected boosting immunogens to generate cross-reactive Ab responses. Next-generation B cell sequencing reveals selection for VRC01-class mutations, including insertions in CDRH1 and FWR3 at positions identical to VRC01-class bNAbs, as well as CDRL1 deletions and/or glycine substitutions to accommodate the N276 glycan. These results provide proof of concept for vaccine-induced affinity maturation of B cell lineages that require rare insertions and deletions.


HIV Seropositivity , HIV-1 , Mice , Animals , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , HIV-1/genetics , HIV Antibodies , Vaccination
20.
ACS Chem Biol ; 18(5): 1180-1191, 2023 05 19.
Article En | MEDLINE | ID: mdl-37104622

SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan binding cleft. However, for the SARS-CoV-2 NTD, protein-glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of variants of concern (VoC) show antigenic pressure, which can be an indication of NTD-mediated receptor binding. Trimeric NTD proteins of SARS-CoV-2, alpha, beta, delta, and omicron did not reveal a receptor binding capability. Unexpectedly, the SARS-CoV-2 beta subvariant strain (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9-O-acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity toward 9-O-acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. These results indicate that SARS-CoV-2 can probe additional evolutionary space, allowing binding to glycan receptors on the surface of target cells.


COVID-19 , Sialic Acids , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , N-Acetylneuraminic Acid
...