Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Euro Surveill ; 27(25)2022 06.
Article En | MEDLINE | ID: mdl-35748300

BackgroundWest Nile virus (WNV) and Usutu virus (USUV), two closely related flaviviruses, mainly follow an enzootic cycle involving mosquitoes and birds, but also infect humans and other mammals. Since 2010, their epidemiological situation may have shifted from irregular epidemics to endemicity in several European regions; this requires confirmation, as it could have implications for risk assessment and surveillance strategies.AimTo explore the seroprevalence in animals and humans and potential endemicity of WNV and USUV in Southern France, given a long history of WNV outbreaks and the only severe human USUV case in France in this region.MethodsWe evaluated the prevalence of WNV and USUV in a repeated cross-sectional study by serological and molecular analyses of human, dog, horse, bird and mosquito samples in the Camargue area, including the city of Montpellier, between 2016 and 2020.ResultsWe observed the active transmission of both viruses and higher USUV prevalence in humans, dogs, birds and mosquitoes, while WNV prevalence was higher in horses. In 500 human samples, 15 were positive for USUV and 6 for WNV. Genetic data showed that the same lineages, WNV lineage 1a and USUV lineage Africa 3, were found in mosquitoes in 2015, 2018 and 2020.ConclusionThese findings support existing literature suggesting endemisation in the study region and contribute to a better understanding of USUV and WNV circulation in Southern France. Our study underlines the importance of a One Health approach for the surveillance of these viruses.


Culicidae , Flavivirus Infections , One Health , West Nile Fever , Animals , Birds/virology , Cross-Sectional Studies , Culicidae/virology , Dogs/virology , Flavivirus/genetics , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , France/epidemiology , Horses/virology , Humans , Seroepidemiologic Studies , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile virus/genetics
2.
Parasitol Res ; 121(3): 999-1008, 2022 Mar.
Article En | MEDLINE | ID: mdl-35128585

Equine piroplasmosis (EP) is a tick-borne disease caused by Babesia caballi and Theileria equi that is potentially emerging in non-endemic countries. We conducted a descriptive study to investigate EP prevalence and spatial distribution in an endemic region: the Camargue and the Plain of La Crau in France. In spring 2015 and 2016, we carried out sampling at stables (total n = 46) with a history of horses presenting chronic fever or weight loss. Overall, we collected blood from 632 horses, which were also inspected for ticks; these horses had been housed in the target stables for at least 1 year. We obtained 585 ticks from these horses and described land use around the stables. Real-time PCR was employed to assess T. equi and B. caballi prevalence in the horses and in the ticks found on the horses. For the horses, T. equi and B. caballi prevalence was 68.6% and 6.3%, respectively. For the ticks found on the horses, prevalence was 28.8% for T. equi and 0.85% for B. caballi. The most common tick species were, in order of frequency, Rhipicephalus bursa, R. sanguineus sl., Hyalomma marginatum, Haemaphysalis punctata, and Dermacentor sp. Horses bearing Rhipicephalus ticks occurred in wetter zones, closer to agricultural areas, permanent crops, and ditches, as well as in drier zones, in the more northern countryside. Compared to horses bearing R. bursa, horses bearing R. sanguineus sl. more frequently occurred near the Rhone River. Prevalence of T. equi in the ticks was as follows: Hyalomma marginatum (43%), Dermacentor sp. (40%), R. bursa (33%), R. sanguineus sl. (19%), and Haemaphysalis punctata (17%). In contrast, B. caballi only occurred in Dermacentor sp. (20%) and R. bursa (1%).


Babesia , Babesiosis , Horse Diseases , Rhipicephalus , Theileria , Theileriasis , Animals , Babesia/genetics , Babesiosis/epidemiology , Cattle , Horse Diseases/epidemiology , Horses , Phylogeny , Prevalence , Theileria/genetics , Theileriasis/epidemiology
3.
Vector Borne Zoonotic Dis ; 16(6): 382-90, 2016 06.
Article En | MEDLINE | ID: mdl-27159212

BACKGROUND: Various methods are currently used for the early detection of West Nile virus (WNV) but their outputs are not quantitative and/or do not take into account all available information. Our study aimed to test a multivariate syndromic surveillance system to evaluate if the sensitivity and the specificity of detection of WNV could be improved. METHODS: Weekly time series data on nervous syndromes in horses and mortality in both horses and wild birds were used. Baselines were fitted to the three time series and used to simulate 100 years of surveillance data. WNV outbreaks were simulated and inserted into the baselines based on historical data and expert opinion. Univariate and multivariate syndromic surveillance systems were tested to gauge how well they detected the outbreaks; detection was based on an empirical Bayesian approach. The systems' performances were compared using measures of sensitivity, specificity, and area under receiver operating characteristic curve (AUC). RESULTS: When data sources were considered separately (i.e., univariate systems), the best detection performance was obtained using the data set of nervous symptoms in horses compared to those of bird and horse mortality (AUCs equal to 0.80, 0.75, and 0.50, respectively). A multivariate outbreak detection system that used nervous symptoms in horses and bird mortality generated the best performance (AUC = 0.87). CONCLUSIONS: The proposed approach is suitable for performing multivariate syndromic surveillance of WNV outbreaks. This is particularly relevant, given that a multivariate surveillance system performed better than a univariate approach. Such a surveillance system could be especially useful in serving as an alert for the possibility of human viral infections. This approach can be also used for other diseases for which multiple sources of evidence are available.


Bird Diseases/mortality , Central Nervous System Diseases/veterinary , Horse Diseases/mortality , West Nile Fever/veterinary , Animals , Animals, Wild , Birds , Central Nervous System Diseases/epidemiology , France/epidemiology , Horses , Humans , Population Surveillance/methods , West Nile Fever/diagnosis , West Nile Fever/epidemiology , West Nile Fever/virology
4.
Int J Environ Res Public Health ; 11(8): 7740-54, 2014 Aug 04.
Article En | MEDLINE | ID: mdl-25093652

To assess environmental and horse-level risk factors associated with West Nile Virus (WNV) circulation in Camargue, Southern France, a serosurvey was conducted on non-vaccinated horses (n = 1159 from 134 stables) in 2007 and 2008. Fifteen Landsat images were examined to quantify areas with open water and flooded vegetation around sampled horses. Mean percentages of areas of open water and flooded vegetation, as well as variations in these percentages between 3 periods (November to February = NOT, March to July = END and August to October = EPI), were calculated for buffers of 2 km radius around the stables. Results of the final logistic regression showed that the risk of WNV seropositivity in horses decreased with their date of acquisition and age. Results also demonstrated the significant role of environmental variables. Horse serological status was associated with variations of open water areas between the NOT (November to February) and END (March to July) periods, as well as between END and EPI (August to October). WNV spillover was found more intense in areas where water level decreased strongly from winter to spring and from spring to summer.


Conservation of Energy Resources , Horse Diseases/epidemiology , Horse Diseases/prevention & control , West Nile Fever/veterinary , Wetlands , Age Factors , Animals , Female , France/epidemiology , Horse Diseases/virology , Horses , Logistic Models , Male , Prevalence , Risk Factors , Seasons , Seroepidemiologic Studies , West Nile Fever/epidemiology , West Nile Fever/prevention & control , West Nile Fever/virology , West Nile virus/physiology
5.
Skeletal Radiol ; 31(9): 536-8, 2002 Sep.
Article En | MEDLINE | ID: mdl-12195508

A 20-year-old white man presented with a localized unilateral swelling in the popliteal fossa. Ultrasound (US) showed the presence of an accessory muscle, the tensor fasciae suralis. The muscle was located in the proximal portion of the popliteal fossa, superficial to the medial head of the gastrocnemius. Its long tendon extended inferiorly to join the Achilles tendon. Magnetic resonance images correlated well with the US findings, confirming the diagnosis. Tensor fasciae suralis muscle is a rare cause of popliteal swelling and must be differentiated from other masses. Both US and magnetic resonance imaging can diagnose it but we suggest US as the first-line technique in its evaluation.


Knee Injuries/diagnosis , Muscle, Skeletal/abnormalities , Tendon Injuries/diagnosis , Adult , Diagnosis, Differential , Humans , Knee Injuries/diagnostic imaging , Magnetic Resonance Imaging , Male , Muscle, Skeletal/diagnostic imaging , Soccer/injuries , Tendon Injuries/diagnostic imaging , Ultrasonography
...