Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 276: 126209, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38728802

ABSTRACT

The rapid development of nanozymes has offered substantial opportunities for the fields of biomedicine, chemical sensing, and food safety. Among these applications, multichannel sensors, with the capability of simultaneously detecting multiple target analytes, hold promise for the practical application of nanozymes in chemical sensing with high detection efficiency. In this study, Rh-decorated Pd nanocubes (Pd-Rh nanocubes) with significantly enhanced peroxidase-like activity are synthesized through the mediation of underpotential deposition (UPD) and subsequently employed to develop a multichannel colorimetric sensor for discriminating tea polyphenols (TPs) and tea authentication. Based on a single reactive unit of efficient catalytic oxidation of 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB), the nanozyme-based multichannel colorimetric sensor responds to each analyte in as short as 1 min. With the aid of principal component analysis (PCA) and hierarchical cluster analysis (HCA), various TPs and types of tea can be accurately identified. This work not only provides a new type of simply structured and highly active nanozymes but also develops a concise and rapid multichannel sensor for practical application in tea authentication and quality inspection.


Subject(s)
Colorimetry , Palladium , Polyphenols , Tea , Tea/chemistry , Polyphenols/analysis , Polyphenols/chemistry , Colorimetry/methods , Palladium/chemistry , Benzidines/chemistry , Metal Nanoparticles/chemistry , Principal Component Analysis , Peroxidase/chemistry , Catalysis , Oxidation-Reduction
2.
Small ; 20(3): e2305369, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37679094

ABSTRACT

The growing demand for highly active nanozymes in various fields has led to the development of several strategies to enhance their activity. Plasmonic enhancement, a strategy used in heterogenous catalysis, represents a promising strategy to boost the activity of nanozymes. Herein, Pd-Au heteromeric nanoparticles (Pd-Au dimers) with well-defined heterointerfaces have been explored as plasmonic nanozymes. As a model system, the Pd-Au dimers with integrated peroxidase (POD)-like activity and plasmonic activity are used to investigate the effect of plasmons on enhancing the activity of nanozymes under visible light irradiation. Mechanistic studies revealed that the generation of hot electron-hole pairs plays a dominant role in plasmonic effect, and it greatly enhances the decomposition of H2 O2 to the reactive oxygen species (ROS) intermediates (•OH, •O2 - and 1 O2 ), leading to elevated POD-like activity of the Pd-Au dimers. Finally, the Pd-Au dimers are applied in the plasmon-enhanced colorimetric method for the detection of alkaline phosphatase, exhibiting broad linear range and low detection limit. This study not only provides a straightforward approach for regulating nanozyme activity through plasmonic heterostructures but also sheds light on the mechanism of plasmon-enhanced catalysis of nanozymes.


Subject(s)
Colorimetry , Nanoparticles , Colorimetry/methods , Catalysis , Reactive Oxygen Species
3.
Nanoscale ; 15(46): 18901-18909, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37975296

ABSTRACT

The application of surface plasmons in heterogeneous catalysis has attracted widespread attention due to their promising potential for harvesting solar energy. The effect of surface adsorbates on catalysts has been well documented in many traditional reactions; nonetheless, their role in plasmonic catalysis has been rarely studied. In this study, an in situ electrochemical surface cleaning strategy is developed and the influence of surface adsorbates on plasmon-enhanced electrochemistry is investigated. Taking Au nanocubes as an example, plasmonic catalysts with clean surfaces are obtained by Cu2O coating and in situ electrochemical etching. During this process, the surface adsorbates of Au nanocubes are removed together with the Cu2O shells. The Au nanocubes with clean surfaces exhibit remarkable performance in plasmon-enhanced electrooxidation of glucose and an enhancement of 445% is demonstrated. The Au NCs with clean surfaces can not only provide more active sites but also avoid halides as hole scavengers, and therefore, the efficient utilization of hot holes by plasmonic excitation is achieved. This process is also generalized to other molecules and applied in electrochemical sensing with high sensitivity. These results highlight the critical role of surface adsorbates in plasmonic catalysis and may forward the design of efficient plasmonic catalysts for plasmon-enhanced electrochemistry.

4.
J Colloid Interface Sci ; 648: 473-480, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37302230

ABSTRACT

Incorporation of oxophilic metals into Pd-based nanostructures has shown great potential in small molecule electrooxidation owing to their superior anti-poisoning capability. However, engineering the electronic structure of oxophilic dopants in Pd-based catalysts remains challenging and their impact on electrooxidation reactions is rarely demonstrated. Herein, we have developed a method for synthesizing PdSb-based nanosheets, enabling the incorporation of the Sb element in a predominantly metallic state despite its high oxophilic nature. Moreover, the Pd90Sb7W3 nanosheet serves as an efficient electrocatalyst for the formic acid oxidation reaction (FAOR), and the underlying promotion mechanism is investigated. Among the as-prepared PdSb-based nanosheets, the Pd90Sb7W3 nanosheet exhibits a remarkable 69.03% metallic state of Sb, surpassing the values observed for the Pd86Sb12W2 (33.01%) and Pd83Sb14W3 (25.41%) nanosheets. X-ray photoelectron spectroscopy (XPS) and CO stripping experiments confirm that the Sb metallic state contributes the synergistic effect of their electronic and oxophilic effect, thus leading to an effective electrooxidation removal of CO and significantly enhanced FAOR electrocatalytic activity (1.47 A mg-1; 2.32 mA cm-1) compared with the oxidated state of Sb. This work highlights the importance of modulating the chemical valence state of oxophilic metals to enhance electrocatalytic performance, offering valuable insights for the design of high-performance electrocatalysts for electrooxidation of small molecules.

5.
Anal Chem ; 95(6): 3267-3273, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36722089

ABSTRACT

FeOOH nanorods, as one-dimensional nanomaterials, have been widely used in many fields due to their stable properties, low cost, and easy synthesis, but their application in the field of chemiluminescence (CL) is rarely reported. In this work, FeOOH nanorods were synthesized by a simple and environmentally friendly one-pot hydrothermal method and used for the first time as a catalyst for generating strong CL with luminol without additional oxidant. Remarkably, luminol-FeOOH exhibits about 250 times stronger CL than the luminol-H2O2 system. Its CL intensity was significantly quenched by uric acid. We established a simple, rapid, sensitive, and selective CL method for the detection of uric acid with a linear range of 20-1000 nM and a detection limit of 6.3 nM (S/N = 3). In addition, we successfully applied this method to the detection of uric acid in human serum, and the standard recoveries were 95.6-106.4%.


Subject(s)
Luminol , Nanotubes , Humans , Oxidoreductases , Uric Acid , Hydrogen Peroxide , Luminescence , Luminescent Measurements/methods , Limit of Detection
6.
Analyst ; 146(2): 597-604, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33179667

ABSTRACT

Herein, a novel electrochemical biosensor was constructed for the highly efficient detection of silver ions. A porous platform constructed with functionalized gold nanoparticles (AuPP) was electropolymerized on the gold electrode surface. The obtained polymer, analogous to a metal-organic framework, was used as the sensing platform together with cytosine-Ag+-cytosine interaction for dual signal amplification. The scanning electron microscopy (SEM) image of the AuPP platform exhibited a porous structure and considerable binding sites for C-riched single stranded DNA, leading to predictable silver ion preconcentration. Based on this strategy, the biosensor showed that the peak current in differential pulse voltammetry rose linearly as the concentration of silver ion increased from 0.005 to 3 µM with a detection limit of 1.3 nM. In addition, in the presence of other metal ions, such as Pb2+, Mn2+, Ni2+, Co2+, Cu2+, Zn2+, Na+, Ca2+, and Cd2+, at the same concentration, the current signal remained almost unchanged, manifesting high selectivity for Ag+. This proposed sensor might exhibit a novel fabrication method for metal ion detection with the aid of multiple AuPP materials by designing ligands with different functional groups.


Subject(s)
Electrochemistry/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Silver/analysis , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...