Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810700

ABSTRACT

BACKGROUND: Prediction of inhibitor development in patients with hemophilia A (HA) remains a challenge. OBJECTIVES: To construct a predictive model for inhibitor development in HA using a network of clinical variables and biomarkers based on the individual similarity network. METHODS: Previously untreated and minimally treated children with severe/moderately severe HA, participants of the HEMFIL Cohort Study, were followed up until reaching 75 exposure days (EDs) without inhibitor (INH-) or upon inhibitor development (INH+). Clinical data and biological samples were collected before the start of factor (F)VIII replacement (T0). A predictive model (HemfilNET) was built to compare the networks and potential global topological differences between INH- and INH+ at T0, considering the network robustness. For validation, the "leave-one-out" cross-validation technique was employed. Accuracy, precision, recall, and F1-score were used as evaluation metrics for the machine-learning model. RESULTS: We included 95 children with HA (CHA), of whom 31 (33%) developed inhibitors. The algorithm, featuring 37 variables, identified distinct patterns of networks at T0 for INH+ and INH-. The accuracy of the model was 74.2% for CHA INH+ and 98.4% for INH-. By focusing the analysis on CHA with high-risk F8 mutations for inhibitor development, the accuracy in identifying CHA INH+ increased to 82.1%. CONCLUSION: Our machine-learning algorithm demonstrated an overall accuracy of 90.5% for predicting inhibitor development in CHA, which further improved when restricting the analysis to CHA with a high-risk F8 genotype. However, our model requires validation in other cohorts. Yet, missing data for some variables hindered more precise predictions.

SELECTION OF CITATIONS
SEARCH DETAIL