Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Molecules ; 26(19)2021 Sep 30.
Article En | MEDLINE | ID: mdl-34641471

Orange peel by-products generated in the food industry are an important source of value-added compounds that can be potentially reused. In the current research, the effect of oven-drying (50-70 °C) and freeze-drying on the bioactive compounds and antioxidant potential from Navelina, Salustriana, and Sanguina peel waste was investigated using pressurized extraction (ASE). Sixty volatile components were identified by ASE-GC-MS. The levels of terpene derivatives (sesquitenenes, alcohols, aldehydes, hydrocarbons, and esters) remained practically unaffected among fresh and freeze-dried orange peels, whereas drying at 70 °C caused significative decreases in Navelina, Salustriana, and Sanguina peels. Hesperidin and narirutin were the main flavonoids quantified by HPLC-MS. Freeze-dried Sanguina peels showed the highest levels of total-polyphenols (113.3 mg GAE·g-1), total flavonoids (39.0 mg QE·g-1), outstanding values of hesperedin (187.6 µg·g-1), phenol acids (16.54 mg·g-1 DW), and the greatest antioxidant values (DPPH•, FRAP, and ABTS•+ assays) in comparison with oven-dried samples and the other varieties. Nanotechnology approaches allowed the formulation of antioxidant-loaded nanoemulsions, stabilized with lecithin, starting from orange peel extracts. Those provided 70-80% of protection against oxidative UV-radiation, also decreasing the ROS levels into the Caco-2 cells. Overall, pressurized extracts from freeze-drying orange peel can be considered a good source of natural antioxidants that could be exploited in food applications for the development of new products of commercial interest.


Antioxidants/isolation & purification , Citrus sinensis/chemistry , Flavonoids/analysis , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Polyphenols/analysis , Antioxidants/pharmacology , Caco-2 Cells , Cell Survival , Emulsions , Hot Temperature , Humans , Plant Extracts/isolation & purification , Pressure
2.
J Food Sci Technol ; 58(10): 4034-4044, 2021 Oct.
Article En | MEDLINE | ID: mdl-34471327

The objective of this study was to use accelerated-solvent-extraction to achieve antioxidant extracts from chia seeds oils, enriched in tocopherols and tocotrienols, namely tocochromanols. Nanotechnology applications have been also incorporated to develop an innovative formulation of chia seeds oil nanoemulsion that preserve its antioxidant potential after conditions of oxidative stress. Chia seeds oils proved to be a valuable source of tocochromanols, from 568.84 to 855.98 µg g-1, depending on the geographical provenance. Quantitative data obtained by LC-DAD-ESI-MS/MS showed outstanding levels of γ-Tocopherol, over 83%, followed far behind by Tocopherols-(α, ß, δ) and Tocotrienols-(α, ß, δ, γ)-tocotrienols. The characteristic tocochromanols fingerprint of chia seeds oils was positively correlated with the FRAP and DPPH antioxidant activity of the extracts (between 18.81 and 138.48 mg Trolox/g). Formulation of the Chia seeds oils as nanoemulsions did not compromised the antioxidant properties of fresh extracts. Interestingly, nanoemulsions retained about the 80% of the initial antioxidant capacity after UV-induced stress, where the non-emulsified oils displayed a remarkable reduction (50-60%) on its antioxidant capacity under the same conditions. These antioxidant chia seeds formulations can constitute a promising strategy to vectorizing vitamin E isomers, in order to be used for food fortification, natural additives and to increase the self-life of food products during packing.

3.
Curr Pharm Des ; 27(30): 3305-3336, 2021 Oct 05.
Article En | MEDLINE | ID: mdl-34102964

The rapid pattern of population ageing in recent years increases the risk of appearance of associated neurodegenerative diseases. Dementias are one of the most feared disorders, and although not necessarily all elderly people have dementia, the number of people with this disease is increasing rapidly. The causes of dementia are multiple, and the diagnosis of the different types of dementia is complicated since most patients display mixed dementias and symptoms overlapping. Personalized diagnosis and treatments would be desirable, but this requires a deep knowledge of each type of dementia where a multidisciplinary approach would be ideal. Thus, the aim of this review is to summarize the features of the main types of dementia as well as to compilate the more recent findings on this subject, ranging from genetic and molecular studies to animal models, including the use of omics platforms based on powerful hybrid instrumental techniques, and neuroimage techniques. On the other hand, we consider the aspects that can prevent these disorders and depend on modifiable factors, such as diet, among others. Finally, new technologies, such as nanotechnology can provide novel strategies for the administration of effective treatments. In this regard, our purpose is to provide the most updated and complete overview of state of the art about characteristics of these disorders.


Alzheimer Disease , Neurodegenerative Diseases , Aged , Aging , Animals , Humans , Models, Animal , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/drug therapy
4.
Pharmaceutics ; 13(3)2021 Mar 10.
Article En | MEDLINE | ID: mdl-33802226

The success on the design of new oral nanocarriers greatly depends on the identification of the best physicochemical properties that would allow their diffusion across the mucus layer that protects the intestinal epithelium. In this context, particle tracking (PT) has arisen in the pharmaceutical field as an excellent tool to evaluate the diffusion of individual particles across the intestinal mucus. In PT, the trajectories of individual particles are characterized by the mean square displacement (MSD), which is used to calculate the coefficient of diffusion (D) and the anomalous diffusion parameter (α) as MSD=4Dτα. Unfortunately, there is no stablished criteria to evaluate the goodness-of-fit of the experimental data to the mathematical model. This work shows that the commonly used R2 parameter may lead to an overestimation of the diffusion capacity of oral nanocarriers. We propose a screening approach based on a combination of R2 with further statistical parameters. We have analyzed the effect of this approach to study the intestinal mucodiffusion of lipid oral nanocarriers, compared to the conventional screening approach. Last, we have developed software able to perform the whole PT analysis in a time-saving, user-friendly, and rational fashion.

6.
Drug Deliv Transl Res ; 11(2): 524-545, 2021 04.
Article En | MEDLINE | ID: mdl-33575972

The potential of nanoemulsions for the oral administration of peptides is still in its early stage. The aim of the present work was to rationally design, develop, and fully characterize a new nanoemulsion (NE) intended for the oral administration of hydrophobically modified insulin (HM-insulin). Specific components of the NE were selected based on their enhancing permeation properties as well as their ability to improve insulin association efficiency (Miglyol 812, sodium taurocholate), stability in the intestinal fluids, and mucodiffusion (PEGylated phospholipids and poloxamer 407). The results showed that the NE co-existed with a population of micelles, forming a mixed system that exhibited a 100% of HM-insulin association efficiency. The nanosystem showed good stability and miscibility in different bio-relevant media and displayed an acceptable mucodiffusive behavior in porcine mucus. In addition, it exhibited a high interaction with cell mono-cultures (Caco -2 and C2BBe1 human colon carcinoma Caco-2 clone cells) and co-cultures (C2BBe1 human colon carcinoma Caco-2 clone/HT29-MTX cells). The internalization in Caco-2 monolayers was also confirmed by confocal microscopy. Finally, the promising in vitro behavior of the nanosystem in terms of overcoming the biological barriers of the intestinal tract was translated into a moderate, although significant, hypoglycemic response (≈ 20-30%), following intestinal administration to both healthy and diabetic rat models. Overall, this information underlines the crucial steps to address when designing peptide-based nanoformulations to successfully overcome the intestinal barriers associated to the oral modality of administration.


Insulin , Nanoparticles , Administration, Oral , Animals , Caco-2 Cells , Drug Delivery Systems , Humans , Micelles , Rats , Swine
7.
Front Neurosci ; 12: 721, 2018.
Article En | MEDLINE | ID: mdl-30405328

The prevalence of neurodegenerative disorders is increasing; however, an effective neuroprotective treatment is still remaining. Nutrition plays an important role in neuroprotection as recently shown by epidemiological and biochemical studies which identified food components as promising therapeutic agents. Neuroprotection includes mechanisms such as activation of specific receptors, changes in enzymatic neuronal activity, and synthesis and secretion of different bioactive molecules. All these mechanisms are focused on preventing neuronal damage and alleviating the consequences of massive cell loss. Some neuropathological disorders selectively affect to particular neuronal populations, thus is important to know their neurochemical and anatomical properties in order to design effective therapies. Although the design of such treatments would be specific to neuronal groups sensible to damage, the effect would have an impact in the whole nervous system. The difficult overcoming of the blood brain barrier has hampered the development of efficient therapies for prevention or protection. This structure is a physical, enzymatic, and influx barrier that efficiently protects the brain from exogenous molecules. Therefore, the development of new strategies, like nanocarriers, that help to promote the access of neuroprotective molecules to the brain, is needed for providing more effective therapies for the disorders of the central nervous system (CNS). In order both to trace the success of these nanoplatforms on the release of the bioactive cargo in the CNS and determinate the concentration at trace levels of targets biomolecules by analytical chemistry and concretely separation instrumental techniques, constitute an essential tool. Currently, these techniques are used for the determination and identification of natural neuroprotective molecules in complex matrixes at different concentration levels. Separation techniques such as chromatography and capillary electrophoresis (CE), using optical and/or mass spectrometry (MS) detectors, provide multiples combinations for the quantitative and qualitative analysis at basal levels or higher concentrations of bioactive analytes in biological samples. Bearing this in mind, the development of food neuroprotective molecules as brain therapeutic agents is a complex task that requires the intimate collaboration and engagement of different disciplines for a successful outcome. In this sense, this work reviews the new advances achieved in the area toward a better understanding of the current state of the art and highlights promising approaches for brain neuroprotection.

8.
Eur J Pharm Biopharm ; 133: 203-213, 2018 Dec.
Article En | MEDLINE | ID: mdl-30268595

Despite the convenience of the oral route for drug administration, the existence of different physiological barriers associated with the intestinal tract greatly lowers the bioavailability of many active compounds. We have previously suggested the potential polymeric nanocapsules, consisting of an oily core surrounded by a polymer shell, as oral drug delivery carriers. Here we present a systematic study of the influence of the surface properties of these nanocapsules on their interaction with the intestinal barriers. Two different surfactants, Pluronic®F68 (PF68) and F127 (PF127), and two polymeric shells, chitosan (CS) and polyarginine (PARG) were chosen for the formulation of the nanocapsules. We analyzed nine different combinations of these polymers and surfactants, and studied the effect of each specific combination on their colloidal stability, enzymatic degradation, and mucoadhesion/mucodiffusion. Our results indicate that both, the polymer shell and the surfactants located at the oil/water interface, influence the interaction of the nanocapsules with the intestinal barriers. More interestingly, according to our observations, the shell components of the nanosystems may have either synergic or disruptive effects on their capacity to overcome the intestinal barriers.


Intestines/chemistry , Nanocapsules/chemistry , Surface Properties/drug effects , Administration, Oral , Biological Availability , Chitosan/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Peptides/chemistry , Poloxamer/chemistry , Polyethylenes/chemistry , Polymers/chemistry , Polypropylenes/chemistry , Surface-Active Agents/chemistry
9.
J Control Release ; 276: 125-139, 2018 04 28.
Article En | MEDLINE | ID: mdl-29518466

The objective of this work was the development of a new drug nanocarrier intended to overcome the barriers associated to the oral modality of administration and to assess its value for the systemic or local delivery of peptides. The nanocarrier was rationally designed taking into account the nature of the intestinal barriers and was loaded with insulin, which was selected as a model peptide. The nanocarrier consisted of a complex between insulin and a hydrophobically-modified cell penetrating peptide (CPP), enveloped by a protecting polymer. The selected CPP was octaarginine (r8), chemically conjugated with cholesterol (Chol) or lauric acid (C12), whereas the protecting polymer was poly (glutamic acid)-poly (ethylene glycol) (PGA-PEG). This enveloping material was intended to preserve the stability of the nanocomplex in the intestinal medium and facilitate its diffusion across the intestinal mucus. The enveloped nanocomplexes (ENCPs) exhibited a number of key features, namely (i) a unimodal size distribution with a mean size of 200 nm and a neutral zeta potential, (ii) the capacity to associate insulin (~100% association efficiency) and protect it from degradation in simulated intestinal fluids, (iii) the ability to diffuse through intestinal mucus and, most importantly, (iv) the capacity to interact with the Caco-2 model epithelium, resulting in a massive insulin cell uptake (47.59 ±â€¯5.79%). This enhanced accumulation of insulin at the epithelial level was not translated into an enhanced insulin transport. In fact, only 2% of insulin was transported across the monolayer, and this was correlated with a moderate response of insulin following oral administration to healthy rats. Despite of this, the accumulation of the insulin-loaded nanocarriers in the intestinal mucosa could be verified in vivo upon their labeling with 99mTc. Overall, these data underline the capacity of the nanocarriers to overcome substantial barriers associated to the oral modality of administration and to facilitate the accumulation of the associated peptide at the intestinal level.


Cell-Penetrating Peptides/administration & dosage , Drug Carriers/administration & dosage , Insulin/administration & dosage , Nanostructures/administration & dosage , Oligopeptides/administration & dosage , Polyethylene Glycols/administration & dosage , Polyglutamic Acid/administration & dosage , Administration, Oral , Animals , Caco-2 Cells , Cholesterol/chemistry , Humans , Intestinal Mucosa/metabolism , Lauric Acids/chemistry , Male , Rats, Sprague-Dawley , Rats, Wistar
10.
Bioanalysis ; 10(4): 215-227, 2018 Feb.
Article En | MEDLINE | ID: mdl-29333875

AIM: We proposed a rapid and high quality method to determine α-tocopherol (α-T) in different biopharmaceutical samples using liquid chromatography-diode array detector on-line ESI-MS/MS. MATERIALS & METHODS: A working standard solution of α-T and internal standard, phenyl-5,7-dimethyl-d6-α-tocopherol, were used for optimization and validation of the method. Levels of α-T in nanoemulsions, serum and plasma samples were evaluated. RESULTS & CONCLUSION: Precision (1% for retention time, 5% for peak area and 3% for relative peak area), linearity range (among 0.625-20.0 µg ml-1), LOD and LOQ, accuracy and matrix effect were studied. The validated chromatographic method is presented as valuable analytical tool for the determination of α-tocopherol in loaded drug delivery systems and in biodistribution levels in blood samples.


Chromatography, Liquid/methods , Dietary Supplements/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Vitamin E/analysis , Animals , Drug Delivery Systems , Emulsions , Mice , Mice, Inbred C57BL , Nanostructures/chemistry , Reproducibility of Results , Tissue Distribution , Vitamin E/blood , Vitamin E/metabolism
11.
J Control Release ; 263: 4-17, 2017 Oct 10.
Article En | MEDLINE | ID: mdl-28235590

The aim of this work was to rationally design and characterize nanocapsules (NCs) composed of an oily core and a polyarginine (PARG) shell, intended for oral peptide delivery. The cationic polyaminoacid, PARG, and the oily core components were selected based on their penetration enhancing properties. Insulin was adopted as a model peptide to assess the performance of the NCs. After screening numerous formulation variables, including different oils and surfactants, we defined a composition consisting of oleic acid, sodium deoxycholate (SDC) and Span 80. This selected NCs composition, produced by the solvent displacement technique, exhibited the following key features: (i) an average size of 180nm and a low polydispersity (0.1), (ii) a high insulin association efficacy (80-90% AE), (iii) a good colloidal stability upon incubation in simulated intestinal fluids (SIF, FaSSIF-V2, FeSSIF-V2), and (iv) the capacity to control the release of the associated insulin for >4h. Furthermore, using the Caco-2 model cell line, PARG nanocapsules were able to interact with the enterocytes, and reversibly modify the TEER of the monolayer. Both cell adhesion and membrane permeabilization could account for the pronounced transport of the NCs-associated insulin (3.54%). This improved interaction was also visualized by confocal fluorescent microscopy following oral administration of PARG nanocapsulesto mice. Finally, in vivo efficacy studies performed in normoglycemic rats showed a significant decrease in their plasma glucose levels after treatment. In conclusion, here we disclose key formulation elements for making possible the oral administration of peptides.


Drug Carriers/administration & dosage , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Intestinal Absorption , Nanocapsules/administration & dosage , Peptides/administration & dosage , Animals , Blood Glucose/drug effects , Caco-2 Cells , Drug Carriers/chemistry , Drug Design , Drug Liberation , Humans , Hypoglycemic Agents/chemistry , Insulin/chemistry , Intestinal Mucosa/metabolism , Intestinal Secretions/chemistry , Male , Nanocapsules/chemistry , Peptides/chemistry , Rats, Sprague-Dawley
12.
Int J Pharm ; 509(1-2): 107-117, 2016 Jul 25.
Article En | MEDLINE | ID: mdl-27210735

Previous work by our group showed the possibility to reduce the toxicity of docetaxel upon its encapsulation in polyaminoacid nanocapsules with a size of 200nm. The objective of this study was to elucidate whether a reduction in the nanocapsules size might facilitate their access to the lymphatic system. To do so, we analyzed the effect of several formulation parameters on the characteristics of polyglutamic acid, PEGylated polyglutamic acid and polyasparagine nanocapsules. From these experiments, we could identify the best conditions to produce nanocapsules with a small size (close to 100nm) and adequate capacity to encapsulate and sustain the release of the antitumor drug docetaxel. Moreover, the results of the stability study made evident the critical role of the polyaminoacid shell on the colloidal stability of the nanocapsules in biologically relevant media. Finally, we studied the influence of the particle size (100nm vs. 200nm) on the biodistribution of PGA-PEG nanocapsules following subcutaneous injection. The results showed that the 100 nm-size nanocapsules accumulate faster in the lymph nodes, than those with a size of 200nm. In summary, these data suggest the potential of 100nm-size polyaminoacid nanocapsules as lymphatic drug delivery carriers.


Lymphatic System/drug effects , Nanocapsules/chemistry , Polyglutamic Acid/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Chemistry, Pharmaceutical/methods , Docetaxel , Drug Carriers/chemistry , Drug Delivery Systems/methods , Female , Lymphatic System/metabolism , Mice , Mice, SCID , Particle Size , Peptides/administration & dosage , Peptides/chemistry , Peptides/metabolism , Polyethylene Glycols/chemistry , Taxoids/administration & dosage , Taxoids/chemistry , Taxoids/metabolism , Tissue Distribution
13.
Adv Healthc Mater ; 4(8): 1246-57, 2015 Jun 03.
Article En | MEDLINE | ID: mdl-25771896

The specific modification of the outer surface of the promising porous metal-organic framework nanocarriers (nanoMOFs) preserving their characteristic porosity is still a major challenge. Here a simple, fast, and biofriendly method for the external functionalization of the benchmarked mesoporous iron(III) trimesate nanoparticles MIL-100(Fe) with heparin, a biopolymer associated with longer-blood circulation times is reported. First, the coated nanoparticles showed intact crystalline structure and porosity with improved colloidal stability under simulated physiological conditions, preserving in addition its encapsulation and controlled release capacities. The effect of the heparin coating on the nanoMOF interactions with the biological environment is evaluated through cell uptake, cytotoxicity, oxidative stress, cytokine production, complement activation, and protein adsorption analysis. These results confirmed that the heparin coating endowed the nanoMOFs with improved biological properties, such as reduced cell recognition, lack of complement activation, and reactive oxygen species production. Overall, the ability to coat the surface of the nanoMOFs using a simple and straight-forward approach could be taken as a way to enhance the versatility and, thus, the potential of porous MOF nanoparticles in biomedicine.


Drug Delivery Systems , Heparin/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Animals , Cell Line, Tumor , Cell Survival , Chemical Phenomena , Coated Materials, Biocompatible/chemistry , Cytokines/metabolism , Delayed-Action Preparations , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mice , Porosity , Reactive Oxygen Species/metabolism
14.
Nanomedicine ; 11(2): 369-77, 2015 Feb.
Article En | MEDLINE | ID: mdl-25267700

Gemcitabine is currently the standard therapy for pancreatic cancer. However, growing concerns over gemcitabine resistance mean that new combinatory therapies are required to prevent loss of efficacy with prolonged treatment. Here, we suggest that this could be achieved through co-administration of RNA interference agents targeting the ubiquitin ligase ITCH. Stable anti-ITCH siRNA and shRNA dendriplexes with a desirable safety profile were prepared using generation 3 poly(propylenimine) dendrimers (DAB-Am16). The complexes were efficiently taken up by human pancreatic cancer cells and produced a 40-60% decrease in ITCH RNA and protein expression in vitro (si/shRNA) and in a xenograft model of pancreatic cancer (shRNA). When co-administered with gemcitabine (100 mg/kg/week) at a subtherapeutic dose, treatment with ITCH-shRNA (3x 50 mg/week) was able to fully suppress tumour growth for 17 days, suggesting that downregulation of ITCH mediated by DAB-Am16/shRNA sensitizes pancreatic cancer to gemcitabine in an efficient and specific manner. FROM THE CLINICAL EDITOR: Gemcitabine delivery to pancreatic cancer often results in the common problem of drug resistance. This team overcame the problem through co-administration of siRNA and shRNA dendriplexes targeting the ubiquitin ligase ITCH.


Cell Proliferation/drug effects , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/drug therapy , Repressor Proteins/antagonists & inhibitors , Ubiquitin-Protein Ligases/antagonists & inhibitors , Apoptosis/drug effects , Cell Line, Tumor , Deoxycytidine/administration & dosage , Deoxycytidine/chemistry , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Polypropylenes/administration & dosage , Polypropylenes/chemistry , RNA Interference , Repressor Proteins/biosynthesis , Ubiquitin-Protein Ligases/biosynthesis , Gemcitabine
15.
Langmuir ; 30(20): 5911-20, 2014 May 27.
Article En | MEDLINE | ID: mdl-24801765

The colloidal and chemical stability of nanoparticles of the nontoxic and biodegradable iron(III) trimesate MIL-100(Fe) nanocarrier have been evaluated in the presence of a series of simulated physiological fluids for intravenous and oral administration. MIL-100(Fe) nanoparticles exhibit an appropriate colloidal stability and biodegradability, mainly dependent on both the nature of their physicochemical surface and the media composition, being a priori compatible with their biomedical use.


Drug Carriers/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Tricarboxylic Acids/chemistry , Colloids , Drug Stability
...