Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(12): e0278130, 2022.
Article in English | MEDLINE | ID: mdl-36574405

ABSTRACT

Huntington's disease is an autosomal dominant heritable disorder caused by an expanded CAG trinucleotide repeat at the N-terminus of the Huntingtin (HTT) gene. Lowering the levels of soluble mutant HTT protein prior to aggregation through increased degradation by the proteasome would be a therapeutic strategy to prevent or delay the onset of disease. Native PAGE experiments in HdhQ150 mice and R6/2 mice showed that PA28αß disassembles from the 20S proteasome during disease progression in the affected cortex, striatum and hippocampus but not in cerebellum and brainstem. Modulating PA28αß activated proteasomes in various in vitro models showed that PA28αß improved polyQ degradation, but decreased the turnover of mutant HTT. Silencing of PA28αß in cells lead to an increase in mutant HTT aggregates, suggesting that PA28αß is critical for overall proteostasis, but only indirectly affects mutant HTT aggregation.


Subject(s)
Huntington Disease , Mice , Animals , Huntington Disease/metabolism , Cerebellum/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proteostasis , Brain Stem/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Disease Models, Animal , Brain/metabolism
2.
J Biol Chem ; 288(38): 27068-27084, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23908352

ABSTRACT

Huntington disease is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) repeat within the protein huntingtin (Htt). N-terminal fragments of the mutant Htt (mHtt) proteins containing the polyQ repeat are aggregation-prone and form intracellular inclusion bodies. Improving the clearance of mHtt fragments by intracellular degradation pathways is relevant to obviate toxic mHtt species and subsequent neurodegeneration. Because the proteasomal degradation pathway has been the subject of controversy regarding the processing of expanded polyQ repeats, we examined whether the proteasome can efficiently degrade Htt-exon1 with an expanded polyQ stretch both in neuronal cells and in vitro. Upon targeting mHtt-exon1 to the proteasome, rapid and complete clearance of mHtt-exon1 was observed. Proteasomal degradation of mHtt-exon1 was devoid of polyQ peptides as partial cleavage products by incomplete proteolysis, indicating that mammalian proteasomes are capable of efficiently degrading expanded polyQ sequences without an inhibitory effect on the proteasomal activity.


Subject(s)
Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Peptides/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Animals , Cell Line , Humans , Huntingtin Protein , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Peptides/genetics , Proteasome Endopeptidase Complex/genetics , Repetitive Sequences, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...