Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 97
2.
Cureus ; 16(4): e58064, 2024 Apr.
Article En | MEDLINE | ID: mdl-38738066

INTRODUCTION:  Multidrug-resistant (MDR) bacteria are widely acknowledged as a significant and pressing public health concern. Tribulus terrestris has been used as a health tonic in traditional medicine since ancient Vedic times. It was also utilized to synthesize small, well-dispersed metal nanoparticles (NPs). The biosynthesized nickel oxide nanoparticles (NiO-NPs) have a broad spectrum of biomedical uses. OBJECTIVE:  The objective of the research was to utilize a green synthesis method to synthesize NiO-NPs using Tribulus terrestris, subsequently characterize, and this study aimed to assess the antioxidant and antibacterial effectiveness of these NPs against wound isolates that are resistant to multiple drugs. MATERIALS AND METHODS:  The synthesis of NiO-NPs was achieved through the titration method, which is a green synthesis approach, and it was characterized by using techniques such as ultraviolet-visible spectroscopy (UV), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and energy dispersive X-ray (EDX). The antioxidant activity of the NPs was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and antibacterial activity was done using the agar well diffusion method. IBM SPSS Statistics for Windows, Version 21 (Released 2012; IBM Corp., Armonk, New York, United States) is used for statistical analysis. RESULTS:  The biosynthesized NiO-NPs exhibited a color change from dark brown to dark green, indicating the successful reduction of the NPs. UV analysis peaks were observed at 310-350 nm, while FT-IR analysis showed the peaks at various wavelengths such as 629.31cm-1 (halo compound; C-Br stretching), 957.80cm-1(aromatic phosphates; P-O-C stretch), 1004.65cm-1 (aliphatic phosphates; P-O-C stretch), 1094.93cm-1 (organic siloxane or silicone; Si-O-Si), 1328.38cm-1 (dialkyl/aryl sulfones), 1604.88cm-1 (open-chain azo-N=N-), 2928.68cm-1 (methylene C-H asym/sym stretch), 3268.65cm-1 (normal polymeric "OH" stretch). The crystallinity of the NPs was determined to be 24.7%, while the remaining 75.6% exhibited an amorphous structure. The SEM image revealed a spherically agglomerated structure of the nano-ranged size NiO-NPs. The EDX analysis indicated the presence of elemental compositions Ni (7.4%), O (39.4%), and C (53.3%) in the biosynthesized NiO-NPs. These NPs demonstrated significant antibacterial activity against Pseudomonas aeruginosa and Klebsiella pneumoniae, moderate antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), and the lowest antibacterial activity against Enterococcus faecalis. CONCLUSION:  Our in vitro results demonstrate that the biosynthesized NiO-NPs exhibit significant antioxidant and antibacterial activity. These NPs can be used as a future antimicrobial medication, particularly against MDR clinical wound isolates of K. pneumoniae, P. aeruginosa, and MRSA.

3.
Cureus ; 16(4): e58350, 2024 Apr.
Article En | MEDLINE | ID: mdl-38756255

Background The evolution of new respiratory diseases, especially upper respiratory tract infections and resistance of pathogens to various antibiotic treatments, needs an alternative way of medication. Chronic respiratory infections in both adults and infants are the major cause of morbidity and mortality, particularly in developing countries. The widespread application of nanomaterials in the field of medicine and the incorporation of nanoparticles in drugs are taken into account. These nanomaterials are involved along with the biosynthesis of plant extract. In this study, selenium oxide nanoparticles (SeO-NPs), known as a significant trace element for human health, were synthesized in an eco-friendly manner. Methodology Green synthesis of Centella asiatica-mediated SeO-NPs was proceeded by titration method and nanoparticles were synthesized. The color intensity, morphological characters, functional properties, and involvement of phytochemical compounds were studied by using UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis. Results The synthesized extract showed a color change from brown to ruby red. Results obtained by characterization and biological assays depicted that the Centella asiatica-mediated SeO-NPs showed absorbance at the peak level 320 nm by UV-Vis spectroscopy, several phytochemical compounds, and O-H functional groups by FT-IR which may be involved in the reduction of the selenium oxide nanoparticles. The XRD showed 57.1% crystalline and 42.6% amorphous nature. The SEM images showed that agglomerated spherical shapes were involved in biological activities. The EDX analysis showed the presence of Se, C, and O compounds. Further, the antibacterial activity of the synthesized nanoparticles showed significant activity in the multidrug-resistant respiratory pathogens. Conclusions Based on the characterization studies and biomedical assays, it can be concluded that the incorporation of SeO-NPs along with the plant extract serves as the best remedy and organic treatment for upper respiratory tract infections. We plan to conduct further in-vivo, toxicity-level studies, and clinical trials.

5.
J Biomol Struct Dyn ; : 1-15, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592189

Globally the SARS-CoV-2 viral infection demands for the new drugs, the TMPRSS2 target plays a vital role in facilitating the virus entry. The aim of the present study is to identify the potential peptide substrate from the Anti-viral database against TMPRSS2 of SARS-CoV-2. The compound screening and variation analysis were performed using molecular docking analysis and online tools such as PROVEAN and SNAP2 server, respectively. The re-docked crystal structure peptide substrate exhibits -128.151 kcal/mol whereas the RRKK peptide substrate shows -134.158 kcal/mol. Further, the selected compounds were proceeded with Molecular Dynamics Simulation, it explores the stability of the complex by revealing the hotspot residues (His296 and Ser441) were active for nucleophilic attack against TMPRSS2. The average Binding Free Energy values computed through MM/GBSA for RRKK, Camostat, and Crystal Structure were shown -69.9278 kcal/mol, -64.5983 kcal/mol, and -63.9755 kcal/mol, respectively against TMPRSS2. The 'rate of acylation' emerges as an indicator for RRKK's efficacy, it maintains the distance of 3.2 Å with Ser441 resembles, whilst its -NH backbone stabilizes at 2.5 Å 'Michaelis Complex' which leads to prevent the entry of SARS-CoV-2 to human cells. The sequence variation analysis explores that the V160 and G6 substitutions are essential to emphasize the uncover possibilities for the ongoing drug discovery research. Therefore, the identified peptide substrate found to be potent against SARS-CoV-2 and these results will be valuable for ongoing drug discovery research.Communicated by Ramaswamy H. Sarma.

6.
Cureus ; 16(3): e56760, 2024 Mar.
Article En | MEDLINE | ID: mdl-38650815

INTRODUCTION: In recent years, antimicrobial drug resistance has emerged as a serious global public health concern, according to the World Health Organization data. The emergence of pathogens resistant to multiple drugs has been linked to an increase in morbidity and mortality from microbial infections. The study's main goal is to explore the efficacy of using Solanum xanthocarpum in the green synthesis of molybdenum nanoparticles (Mo NPs) for antibacterial and antioxidant properties. METHODS: An eco-friendly method of synthesizing Mo NPs was accomplished using an aqueous extract of Solanum xanthocarpum. Characterization of the synthesized nanoparticles was done by UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). After that, antibacterial and antioxidant activity was further evaluated. RESULTS: The UV-visible spectrophotometer analysis confirmed the presence of synthesized Mo NPs showing a peak around 320 nm. The presence of functional compounds like C-CI, C-H, C=C, and O=C=O was confirmed by FT-IR spectrum analysis. The positions of diffraction peaks in Mo NP patterns were identified using XRD analysis; they were more crystalline (82.7%) and less amorphous (17.3%). The presence of the elements molybdenum (Mo), carbon (C), and oxygen (O) was confirmed by the EDX spectrum and irregular shapes shown in the SEM images. Further, the antimicrobial study results showed the formation of an inhibition zone against 27 mm for Klebsiella pneumoniae, 24 mm for Pseudomonas aeruginosa, 22 mm for Staphylococcus aureus, and 24 mm for Enterococcus faecalis, respectively, at a high concentration 80 µg/ml of Mo NPs. The maximum antioxidant activity at 100 µg/ml was 73.49%, compared to the standard ascorbic acid (74.25%). Additionally, the moderate activity at 60 µg/ml was 53.21%, compared to the standard (56.5%), and the minimal activity at 20 µg/ml was 30.21%, compared to the standard (36.89%). CONCLUSION: The environmentally friendly synthesized Mo NPs from Solanum xanthocarpum exhibited antioxidant activity. Furthermore, the findings show that Mo NPs mediated by Solanum xanthocarpum can inhibit antibiotic-resistant bacteria, especially methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus faecalis. In order to understand further how nanoparticles work against bacteria that are resistant to many drugs, additional research and clinical studies would be needed.

13.
Int Immunopharmacol ; 131: 111859, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38492342

Epilepsy is a chronic neurological disease characterized by a persistent susceptibility to seizures. Pharmaco-resistant epilepsies, impacting around 30 % of patients, highlight the urgent need for improved treatments. Neuroinflammation, prevalent in epileptogenic brain regions, is a key player in epilepsy, prompting the search for new mechanistic therapies. Hence, in this study, we explored the anti-inflammatory potential of pyrazole benzenesulfonamide derivative (T1) against pentylenetetrazole (PTZ) induced epilepsy-like conditions in in-vivo zebrafish model. The results from the survival assay showed 79.97 ± 6.65 % at 150 µM of T1 compared to PTZ-group. The results from reactive oxygen species (ROS), apoptosis and histology analysis showed that T1 significantly reduces cellular damage due to oxidative stress in PTZ-exposed zebrafish. The gene expression analysis and neutral red assay results demonstrated a notable reduction in the inflammatory response in zebrafish pre-treated with T1. Subsequently, the open field test unveiled the anti-convulsant activity of T1, particularly at a concentration of 150 µM. Moreover, both RT-PCR and immunohistochemistry findings indicated a concentration-dependent potential of T1, which inhibited COX-2 in zebrafish exposed to PTZ. In summary, T1 protected zebrafish against PTZ-induced neuronal damage, and behavioural changes by mitigating the inflammatory response through the inhibition of COX-2.


Epilepsy , Pentylenetetrazole , Animals , Humans , Zebrafish , Benzenesulfonamides , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/metabolism , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Disease Models, Animal
14.
Cureus ; 16(1): e51737, 2024 Jan.
Article En | MEDLINE | ID: mdl-38318546

INTRODUCTION: The current development of nanoparticles (NPs) with significant antibacterial properties, low cost and low toxicity has made it possible to develop novel techniques for treatments in the medical field. The titanium metal oxide, when combined with a carbonaceous material like graphene, which has excellent absorbing capacity, is efficient in loading drugs and thus helps in drug delivery and also in biomedical applications like anticancer, anti-inflammatory, antioxidant, and antibacterial activities. MATERIALS AND METHODS: Titanium-doped graphene oxide nanoparticles (Ti/GO-NPs) were processed by the one-pot synthesis method; further characterization was performed by using UV-visible spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), field emission electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis and biomedical applications like anticancer, anti-inflammatory, antioxidant and antibacterial activities. RESULTS: The synthesized end product of Ti/GO-NPs showed a creamy white appearance. Subsequent characterization studies of UV-Vis spectroscopy revealed a peak level of 373 nm at 24 hours and 404 nm after 48 hours. FT-IR analysis exhibited a broad absorption band within the range of 1000-3500 cm-1, which was attributed to various chemical compounds of C-Br, C-I stretching, C=C bending, S=O stretching, O=H stretching, C=C stretching, H bonded and OH stretching to different absorbance wavelength ranges. SEM analysis exhibited quasi-spherical-shaped Ti/GO-NPs with an average particle size of 50- 100 nm and EDX analysis showed the elemental composition of 32.3% titanium 43.9% oxygen and 2.5% carbon. The antibacterial activity showed moderate activity against Staphylococcus aureus and no activity against Pseudomonas aeruginosa, Enterococcus faecalis and E. coli. The antioxidant activity exhibited 88% at 50 µg/mL concentration, the anti-inflammatory activity revealed 80% at 80 µg/mL concentration and the anticancer activity showed 21% at 150 µg/mL concentration. CONCLUSION: The characterization and biomedical application conclude that a combination of Ti/GO-NPs will be efficient in drug delivery. The study showed moderate antibacterial activity and significant antioxidant, anti-inflammatory and anticancer activities. Considering their physiochemical properties, absorption capacity and mechanism of drug delivery, Ti/GO-NPs can be incorporated into various applications in the medical field.

15.
Cureus ; 16(1): e52279, 2024 Jan.
Article En | MEDLINE | ID: mdl-38357054

INTRODUCTION:  Clerodendrum phlomidis plays a significant role in many indigenous medical systems, and it can be mostly found in Southeast Asia. The objective of the study was to synthesize and characterize the biosynthesized aluminum oxide nanoparticles (AlO-NPs) using C. phlomidis and analyze their antibacterial (bactericidal), antioxidant, and anti-inflammatory activities. METHODS: The extract was prepared by the autoclave-assisted method, and the AlO-NPs were synthesized by the green synthesis method. The biosynthesized AlO-NPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray (EDX) analysis. The antibacterial property was assessed by the Kirby-Bauer well diffusion method, and the antioxidant activity was checked by DPPH (2,2-diphenyl-1-picrylhydrazyl) activity compared with the control L-ascorbic acid. Anti-inflammatory activity was evaluated by an albumin denaturation assay, and diclofenac was used as a control. IBM SPSS Statistics for Windows, Version 21.0 was used for the statistical analysis.  Results: An absorption peak at a wavelength of 380 nm was detected by UV-Vis spectroscopy analysis. It proves that AlO-NPs have been successfully produced by the green synthesis method. The results of the FT-IR study demonstrated the existence of numerous chemicals and functional groups in the 500-3500 cm-1 range. AlO-NPs from the plant extract were subjected to FE-SEM analysis, which revealed an aggregated or spherically cluster-like structure. The sample's elemental makeup, which revealed that it included 38% aluminum and 28% oxygen, was identified with the help of the EDX, and this verified the high purity of the AlO-NPs. The results of the antibacterial activity of AlO-NPs revealed that there was a zone of inhibition for Enterococcus faecalis; however, there was no zone of inhibition for Streptococcus mutans. The synthesized AlO-NPs exhibit strong antioxidative (DPPH activity) and anti-inflammatory (albumin denaturation assay) action. In this work, the in vitro antioxidant activity of C. phlomidis was assessed using the standard, L-ascorbic acid, as a measure of DPPH activity. At a maximum concentration of 500 µg/ml, the obtained results showed the incredible antioxidant properties of the investigated AlO-NPs synthesized from the plant extracts and demonstrated 90% inhibition. AlO-NPs that were biosynthesized showed effective anti-inflammatory activity at a higher concentration of 100 µg/ml and demonstrated 89% inhibition in contrast to the drug diclofenac sodium. CONCLUSION: According to the study's findings, AlO-NPs made using a greener synthesis approach have the potential to be used in a variety of industries and are also an affordable and sustainable way to effectively act as anti-inflammatory and antioxidant agents.

18.
BMC Microbiol ; 23(1): 392, 2023 Dec 08.
Article En | MEDLINE | ID: mdl-38062398

BACKGROUND: Colistin is an antibiotic used as a last-resort to treat multidrug-resistant Gram-negative bacterial infections. Colistin had been used for a long time in veterinary medicine for disease control and as a growth promoter in food-producing animals. This excessive use of colistin in food animals causes an increase in colistin resistance. This study aimed to determine molecular characteristics of colistin-resistant Escherichia coli in broiler chicken and chicken farm environments. RESULTS: Four hundred fifty-three cloacal and farm environment samples were collected from six different commercial chicken farms in Kelantan, Malaysia. E. coli was isolated using standard bacteriological methods, and the isolates were tested for antimicrobial susceptibility using disc diffusion and colistin minimum inhibitory concentration (MIC) by broth microdilution. Multiplex PCR was used to detect mcr genes, and DNA sequencing was used to confirm the resistance genes. Virulence gene detection, phylogroup, and multilocus sequence typing (MLST) were done to further characterize the E. coli isolates. Out of the 425 (94%; 425/453) E. coli isolated from the chicken and farm environment samples, 10.8% (48/425) isolates were carrying one or more colistin-resistance encoding genes. Of the 48 colistin-resistant isolates, 54.2% (26/48) of the mcr positive isolates were genotypically and phenotypically resistant to colistin with MIC of colistin ≥ 4 µg/ml. The most prominent mcr gene detected was mcr-1 (47.9%; 23/48), followed by mcr-8 (18.8%; 9/48), mcr-7 (14.5%; 7/48), mcr-6 (12.5%; 6/48), mcr-4 (2.1%; 1/48), mcr-5 (2.1%; 1/48), and mcr-9 (2.1%; 1/48) genes. One E. coli isolate originating from the fecal sample was found to harbor both mcr-4 and mcr-6 genes and another isolate from the drinking water sample was carrying mcr-1 and mcr-8 genes. The majority of the mcr positive isolates were categorized under phylogroup A followed by phylogroup B1. The most prevalent sequence typing (ST) was ST1771 (n = 4) followed by ST206 (n = 3). 100% of the mcr positive E. coli isolates were multidrug resistant. The most frequently detected virulence genes among mcr positive E. coli isolates were ast (38%; 18/48) followed by iss (23%; 11/48). This is the first research to report the prevalence of mcr-4, mcr-5, mcr-6, mcr-7, and mcr-8 genes in E. coli from broiler chickens and farm environments in Malaysia. CONCLUSION: Our findings suggest that broiler chickens and broiler farm environments could be reservoirs of colistin-resistant E. coli, posing a risk to public health and food safety.


Escherichia coli Infections , Escherichia coli Proteins , Animals , Escherichia coli , Colistin/pharmacology , Chickens/microbiology , Farms , Multilocus Sequence Typing , Escherichia coli Proteins/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
19.
Sci Rep ; 13(1): 16314, 2023 09 28.
Article En | MEDLINE | ID: mdl-37770520

Sediment contamination jeopardizes wetlands by harming aquatic organisms, disrupting food webs, and reducing biodiversity. Carcinogenic substances like heavy metals bioaccumulate in sediments and expose consumers to a greater risk of cancer. This study reports Pb, Cr, Cu, and Zn levels in sediments from eight wetlands in India. The Pb (51.25 ± 4.46 µg/g) and Cr (266 ± 6.95 µg/g) concentrations were highest in Hirakud, Cu (34.27 ± 2.2 µg/g) in Bhadrak, and Zn (55.45 ± 2.93 µg/g) in Koraput. The mean Pb, Cr, and Cu values in sediments exceeded the toxicity reference value. The contamination factor for Cr was the highest of the four metals studied at Hirakud (CF = 7.60) and Talcher (CF = 6.97). Furthermore, high and moderate positive correlations were observed between Cu and Zn (r = 0.77) and Pb and Cr (r = 0.36), respectively, across all sites. Cancer patients were found to be more concentrated in areas with higher concentrations of Pb and Cr, which are more carcinogenic. The link between heavy metals in wetland sediments and human cancer could be used to make policies that limit people's exposure to heavy metals and protect their health.


Metals, Heavy , Neoplasms , Water Pollutants, Chemical , Humans , Wetlands , Carcinogens/toxicity , Lead , Geologic Sediments , Environmental Monitoring , Metals, Heavy/toxicity , Metals, Heavy/analysis , Neoplasms/chemically induced , Risk Assessment , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , China
...